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The usual notion of Galois extension over fields was extended for commu-
tative rings by M. Auslander and O. Goldman in [1]. Some years later, the
Galois theory over commutative rings was developed by S. U. Chase, D. K.
Harrison and A. Rosenberg in [6]. They presented several equivalent conditions
for the definition of Galois extension. Among the main results, they proved a
Galois correspondence in the context of commutative rings. Precisely, if R ⊂ S
is a Galois extension of commutative rings with Galois group G, then there
exists a bijective association between the set of subgroups of G and the set of
R-subalgebras of S which are G-strong and R-separable.

In the 1990’s, R. Exel introduced the notion of partial actions of a group in
the theory of operator algebras, see for instance [9] and [10]. The same notion
in an algebraic context was considered in [7]. Particularly, it was defined partial
actions of groups on rings which is the key to develop a partial Galois theory.
So, the Galois theory for partial actions of groups on rings was presented two
years later in [8] generalizing the results of [6].

On the other hand, in the context of category theory, a groupoid is a small
category in which every morphism has inverse. However, a groupoid can be seen
as a natural generalization of a group. In fact, a groupoid is a set G equipped
with a set of identities G0 ⊂ G and a binary operation defined partially which is
associative and, for each g ∈ G, there exist g−1 ∈ G such that g−1g = s(g) ∈ G0

and gg−1 = t(g) ∈ G0. If G0 has a unique element then G is a group. This
algebraic version of groupoids motivated the authors of [2] to consider partial
actions of groupoids on rings. In particular, it was defined in [2] the notion
of Galois extension for partial actions of groupoids. A version of the Galois
correspondence for global actions of groupoids on commutative rings was given
in [11].

An special class of partial actions of connected groupoids was studied in [4].
This class was named group-type partial groupoid actions and this name is due
to the fact that the partial skew groupoid ring associated can be realized as a
partial skew group ring; see details in Theorem 4.4 of [4]. It is easy to construct
examples of group-type partial actions of groupoids using the formulas given in
(4) and (5) of [3]. In particular, every global groupoid action is a group-type
partial action.

The main contribution of this talk is to show a Galois correspondence for
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group-type partial actions of groupoids. This correspondence is submitted in
a recent paper joint with D. Bagio and A. Sant’Ana (cf. [5]). Precisely, let
α = (Sg, αg)g∈G be a unital group-type partial action of a connected finite
groupoid G on a comutative ring S = ⊕y∈G0

Sy. For each subgroupoid H of G,
we consider αH = (Sh, αh)h∈H the partial action of H on SH = ⊕y∈H0Sy. Denote
by SαH the subring of invariant elements. On the other hand, GT denotes the
set of elements of G that fix T , where T is a subring of S. Consider the set
wSubg(G) whose elements are wide subgroupoids H of G such that αH is group-
type. Also, let B(S) be the set of all subrings T of S which are SαG -separable,
α-strong and such that GT = H, for some H ∈ wSubg(G). With this notation,
we have the following Galois correspondence.

Theorem. (Galois Correspondence) Let S be an αG-partial Galois extension
of SαG . There exists a bijective correspondence between wSubg(G) and B(S)
given by H 7→ SαH whose inverse is given by T 7→ GT .

The Galois correspondence for not-necessarily connected groupoids follows from
the connected case. The previous theorem recover the Galois correspondence
for global groupoid actions given in Theorem 4.6 (i) of [11].
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