Representations of the restricted enveloping

 algebra $\mathfrak{u}(\mathfrak{m})$ in characteristic 2Dirceu Bagio
dirceu.bagio@ufsm.br
Federal University of Santa Maria

Cimpa School, Florianópolis
February 7, 2021

* This is a work in progress with N. Andruskiewitsch, S. D. Flora and D. Flores.

Outline
The Drinfeld double $D(H)$ of the restricted Jordan plane.

Outline
The Drinfeld double $D(H)$ of the restricted Jordan plane.
$\triangleright \quad D(H)$ as an abelian extension:

Outline
The Drinfeld double $D(H)$ of the restricted Jordan plane.
$\triangleright \quad D(H)$ as an abelian extension:

$$
\mathbf{T} \stackrel{\iota}{\hookrightarrow} D(H) \xrightarrow{\pi} \mathfrak{u}(\mathfrak{m})
$$

$\triangleright \mathfrak{u}(\mathfrak{m})$ is of tame representation type.

Outline
The Drinfeld double $D(H)$ of the restricted Jordan plane.
$\triangleright \quad D(H)$ as an abelian extension:

$$
\mathbf{T} \stackrel{\iota}{\hookrightarrow} D(H) \xrightarrow{\pi} \mathfrak{u}(\mathfrak{m})
$$

$\triangleright \mathfrak{u}(\mathfrak{m})$ is of tame representation type.
$\triangleright \quad$ Indecomposable representations of $\mathfrak{u}(\mathfrak{m})$.

In what follows, \mathbb{k} is an algebraically closed field of characteristic 2.

In what follows, \mathbb{k} is an algebraically closed field of characteristic 2 .
Restricted Jordan plane
It is the algebra \mathscr{B} of dimension 2^{4} presented by generators x_{1}, x_{2} with defining relations

$$
\begin{array}{ll}
x_{1}^{2}=0, & x_{2}^{2} x_{1}=x_{1} x_{2}^{2}+x_{1} x_{2} x_{1}, \\
x_{2}^{4}=0, & x_{1} x_{2} x_{1} x_{2}=x_{2} x_{1} x_{2} x_{1} . \tag{2}
\end{array}
$$

In what follows, \mathbb{k} is an algebraically closed field of characteristic 2.
Restricted Jordan plane
It is the algebra \mathscr{B} of dimension 2^{4} presented by generators x_{1}, x_{2} with defining relations

$$
\begin{array}{ll}
x_{1}^{2}=0, & x_{2}^{2} x_{1}=x_{1} x_{2}^{2}+x_{1} x_{2} x_{1}, \\
x_{2}^{4}=0, & x_{1} x_{2} x_{1} x_{2}=x_{2} x_{1} x_{2} x_{1} . \tag{2}
\end{array}
$$

Bosonization

Let $\Gamma=\langle g\rangle$ be the cyclic group of order 2, written multiplicatively. The bosonization $H:=\mathscr{B} \# \mathbb{k} \Gamma$ is a pointed Hopf algebra of dimension 2^{5} generated by x_{1}, x_{2}, g with satisfies the previous relations and

$$
\begin{equation*}
g x_{1}=x_{1} g, \quad g x_{2}=x_{2} g+x_{1} g, \quad g^{2}=1 \tag{3}
\end{equation*}
$$

The coproduct of H is given by

$$
\Delta(g)=g \otimes g, \quad \Delta\left(x_{i}\right)=x_{i} \otimes 1+g \otimes x_{i}, \quad i \in \mathbb{I}_{2}
$$

Drinfeld double of H
The Drinfeld double of H is $D(H)=H \otimes H^{* o p}$ as coalgebra. As algebra, $D(H)$ is generated by $x_{1}, x_{2}, g, w_{1}, w_{2}, \gamma$ with relations (1),(2), (3) and

Drinfeld double of H
The Drinfeld double of H is $D(H)=H \otimes H^{* o p}$ as coalgebra. As algebra, $D(H)$ is generated by $x_{1}, x_{2}, g, w_{1}, w_{2}, \gamma$ with relations
(1),(2), (3) and

$$
\begin{array}{ll}
w_{1}^{2}=0, & w_{2}^{2} w_{1}=w_{1} w_{2}^{2} \\
w_{2}^{4}=0, & w_{1} w_{2} w_{1} w_{2}=w \\
\gamma^{2}=\gamma, & w_{i} \gamma=\gamma w_{i}+w_{1} \\
w_{1} x_{1}=x_{1} w_{1}, & w_{1} x_{2}=x_{2} w_{1}+ \\
w_{1} g=g w_{1}, & w_{2} x_{1}=x_{1}\left(w_{1}+\right. \\
w_{2} g=g\left(w_{1}+w_{2}\right), & \gamma x_{i}=x_{i} \gamma+x_{i}, \\
w_{2} x_{2}=x_{2} w+g \gamma, &
\end{array}
$$

Drinfeld double of H
The Drinfeld double of H is $D(H)=H \otimes H^{* o p}$ as coalgebra. As algebra, $D(H)$ is generated by $x_{1}, x_{2}, g, w_{1}, w_{2}, \gamma$ with relations (1),(2), (3) and

$$
\begin{array}{ll}
w_{1}^{2}=0, & w_{2}^{2} w_{1}=w_{1} w_{2}^{2}+w_{1} w_{2} w_{1}, \\
w_{2}^{4}=0, & w_{1} w_{2} w_{1} w_{2}=w_{2} w_{1} w_{2} w_{1}, \\
\gamma^{2}=\gamma, & w_{i} \gamma=\gamma w_{i}+w_{i}, \\
w_{1} x_{1}=x_{1} w_{1}, & w_{1} x_{2}=x_{2} w_{1}+1+g, \\
w_{1} g=g w_{1}, & w_{2} x_{1}=x_{1}\left(w_{1}+w_{2}\right)+1+g, \\
w_{2} g=g\left(w_{1}+w_{2}\right), & \gamma x_{i}=x_{i} \gamma+x_{i}, \\
w_{2} x_{2}=x_{2} w+g \gamma, &
\end{array}
$$

We have $\operatorname{dim} D(H)=2^{10}$.

Fix the following elements in $D(H)$:

$$
x_{21}=x_{1} x_{2}+x_{2} x_{1}, \quad w_{21}=w_{1} w_{2}+w_{2} w_{1}
$$

Fix the following elements in $D(H)$:

$$
x_{21}=x_{1} x_{2}+x_{2} x_{1}, \quad w_{21}=w_{1} w_{2}+w_{2} w_{1}
$$

Central Hopf subalgebra
The subalgebra \mathbf{T} of $D(H)$ generated by $x_{1}, x_{21}, w_{1}, w_{21}$ and g is a normal local commutative Hopf subalgebra with defining relations

$$
x_{1}^{2}=0, \quad x_{21}^{2}=0, \quad w_{1}^{2}=0, \quad w_{21}^{2}=0, \quad g^{2}=1
$$

Also $\operatorname{dim} \mathbf{T}=2^{5}$.

Fix the following elements in $D(H)$:

$$
x_{21}=x_{1} x_{2}+x_{2} x_{1}, \quad w_{21}=w_{1} w_{2}+w_{2} w_{1}
$$

Central Hopf subalgebra
The subalgebra \mathbf{T} of $D(H)$ generated by $x_{1}, x_{21}, w_{1}, w_{21}$ and g is a normal local commutative Hopf subalgebra with defining relations

$$
x_{1}^{2}=0, \quad x_{21}^{2}=0, \quad w_{1}^{2}=0, \quad w_{21}^{2}=0, \quad g^{2}=1 .
$$

Also $\operatorname{dim} \mathbf{T}=2^{5}$.
Hence

$$
\mathbf{T} \stackrel{\iota}{\hookrightarrow} D(H) \xrightarrow{\pi} D(H) / D(H) \mathbf{T}^{+}
$$

is an exact sequence of Hopf algebras.

We fix the following elements of $D(H) / D(H) \mathbf{T}^{+}$:

$$
a=\bar{x}_{2}, \quad b=\bar{w}_{2}, \quad c=\bar{\gamma} .
$$

We fix the following elements of $D(H) / D(H) \mathbf{T}^{+}$:

$$
a=\bar{x}_{2}, \quad b=\bar{w}_{2}, \quad c=\bar{\gamma} .
$$

Hopf algebra quotient
The algebra $D(H) / D(H) \mathbf{T}^{+}$is generated by a, b, c and satisfies the relations

$$
\begin{array}{ll}
a b+b a=c, & a c+c a=a, \\
a^{4}=b^{4}=0, & c^{2}+c=0
\end{array}
$$

We fix the following elements of $D(H) / D(H) \mathbf{T}^{+}$:

$$
a=\bar{x}_{2}, \quad b=\bar{w}_{2}, \quad c=\bar{\gamma} .
$$

Hopf algebra quotient
The algebra $D(H) / D(H) \mathbf{T}^{+}$is generated by a, b, c and satisfies the relations

$$
\begin{array}{lll}
a b+b a=c, & a c+c a=a, & b c+c b=b, \\
a^{4}=b^{4}=0, & c^{2}+c=0 . &
\end{array}
$$

The Hopf algebra $D(H) / D(H) \mathbf{T}^{+}$is a well-known algebra in modular Lie theory.

Denote by \mathfrak{s} the unique, up to isomorphism, simple Lie algebra of dimension 3 , that is, \mathfrak{s} has a basis $\{e, f, h\}$ and bracket

$$
[e, f]=h, \quad[e, h]=e, \quad[f, h]=f .
$$

Denote by \mathfrak{s} the unique, up to isomorphism, simple Lie algebra of dimension 3 , that is, \mathfrak{s} has a basis $\{e, f, h\}$ and bracket

$$
[e, f]=h, \quad[e, h]=e, \quad[f, h]=f
$$

The Lie algebra \mathfrak{s} is not restricted. The minimal 2-envelope of \mathfrak{s} is a 5-dimensional Lie algebra m .

Denote by \mathfrak{s} the unique, up to isomorphism, simple Lie algebra of dimension 3 , that is, \mathfrak{s} has a basis $\{e, f, h\}$ and bracket

$$
[e, f]=h, \quad[e, h]=e, \quad[f, h]=f
$$

The Lie algebra \mathfrak{s} is not restricted. The minimal 2-envelope of \mathfrak{s} is a 5 -dimensional Lie algebra \mathfrak{m}.
The algebra $\mathfrak{u}(\mathfrak{m})$
The restricted enveloping algebra $\mathfrak{u}(\mathfrak{m})$ of \mathfrak{m} is isomorphic to $D(H) / D(H) \mathbf{T}^{+}$via

$$
e \mapsto a, \quad f \mapsto b, \quad h \mapsto c
$$

and we have an exact sequence of Hopf algebras

$$
\mathbf{T} \stackrel{\iota}{\hookrightarrow} D(H) \xrightarrow{\pi} \mathfrak{u}(\mathfrak{m})
$$

Denote by \mathfrak{s} the unique, up to isomorphism, simple Lie algebra of dimension 3 , that is, \mathfrak{s} has a basis $\{e, f, h\}$ and bracket

$$
[e, f]=h, \quad[e, h]=e, \quad[f, h]=f
$$

The Lie algebra \mathfrak{s} is not restricted. The minimal 2-envelope of \mathfrak{s} is a 5 -dimensional Lie algebra \mathfrak{m}.
The algebra $\mathfrak{u}(\mathfrak{m})$
The restricted enveloping algebra $\mathfrak{u}(\mathfrak{m})$ of \mathfrak{m} is isomorphic to $D(H) / D(H) \mathbf{T}^{+}$via

$$
e \mapsto a, \quad f \mapsto b, \quad h \mapsto c
$$

and we have an exact sequence of Hopf algebras

$$
\mathbf{T} \stackrel{\iota}{\hookrightarrow} D(H) \xrightarrow{\pi} \mathfrak{u}(\mathfrak{m})
$$

For this reason we are interested in the representations of $\mathfrak{u}(\mathfrak{m})$.

Let V_{0}, respectively V_{1}, denote the one-dimensional $\mathfrak{u}(\mathfrak{m})$-module, respectively the three dimensional $\mathfrak{u}(\mathfrak{m})$-module \mathfrak{s} with the adjoint representation ad.

Let V_{0}, respectively V_{1}, denote the one-dimensional $\mathfrak{u}(\mathfrak{m})$-module, respectively the three dimensional $\mathfrak{u}(\mathfrak{m})$-module \mathfrak{s} with the adjoint representation ad.

Thus V_{1} in the basis $\left\{v_{1}, v_{2}, v_{3}\right\}:=\{b, c, a\}$ of \mathfrak{s} is given by $\operatorname{ad} a=\mathrm{A}, \operatorname{ad} b=\mathrm{B}, \operatorname{ad} c=\mathrm{C}$, where

$$
A=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad B=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \quad C=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Theorem.
The simple modules of $\mathfrak{u}(\mathfrak{m})$ are V_{0} and V_{1}.

Consider the following 8-dimensional $\mathfrak{u (m) \text { -module } M}$

where the arrows oriented from left to right indicate the action of a while the arrows from right to left are the action of b.

Consider the following 8-dimensional $\mathfrak{u (m) \text { -module } M}$

where the arrows oriented from left to right indicate the action of a while the arrows from right to left are the action of b.

Theorem.

\rightsquigarrow The projective cover of the simple module V_{0} is $P\left(V_{0}\right)=M$.
$\rightsquigarrow P\left(V_{0}\right) \simeq \mathfrak{u}(\mathfrak{m}) e_{0}$, where $e_{0}=\left(1+a b+a^{2} b^{2}\right)(1+c)$ is a primitive idempotent of $\mathfrak{u}(\mathfrak{m})$.

Consider the following 8-dimensional $\mathfrak{u (m) \text { -module } N}$

Consider the following 8-dimensional $\mathfrak{u}(\mathfrak{m})$-module N

Theorem.
\rightsquigarrow The projective cover of the simple module V_{1} is $P\left(V_{1}\right)=N$.
$\rightsquigarrow P\left(V_{1}\right) \simeq \mathfrak{u}(\mathfrak{m}) e_{1}$, where $e_{1}=\left(1+a^{2} b^{2}\right) c$ is a primitive idempotent of $\mathfrak{u}(\mathfrak{m})$.

Let $e=e_{0}+e_{1}$ where e_{0} and e_{1} are the primitive idempotents in $\mathfrak{u}(\mathfrak{m})$ generating the projective covers $P\left(V_{0}\right)$ and $P\left(V_{1}\right)$. Then the basic algebra associated to $\mathfrak{u}(\mathfrak{m})$ is

$$
\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}=e \mathfrak{u}(\mathfrak{m}) e
$$

Let $e=e_{0}+e_{1}$ where e_{0} and e_{1} are the primitive idempotents in $\mathfrak{u}(\mathfrak{m})$ generating the projective covers $P\left(V_{0}\right)$ and $P\left(V_{1}\right)$. Then the basic algebra associated to $\mathfrak{u}(\mathfrak{m})$ is

$$
\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}=e \mathfrak{u}(\mathfrak{m}) e
$$

The basic algebra $\mathfrak{u (m)}{ }^{b}$ has a basis

$$
\left\{e_{0}, e_{1}, a e_{0}, a^{3} e_{1}, b^{3} e_{0}, b e_{1}, a^{3} b^{3} e_{0}, a b e_{1}\right\} .
$$

Let $e=e_{0}+e_{1}$ where e_{0} and e_{1} are the primitive idempotents in $\mathfrak{u}(\mathfrak{m})$ generating the projective covers $P\left(V_{0}\right)$ and $P\left(V_{1}\right)$. Then the basic algebra associated to $\mathfrak{u}(\mathfrak{m})$ is

$$
\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}=e \mathfrak{u}(\mathfrak{m}) e
$$

The basic algebra $\mathfrak{u (m)}{ }^{b}$ has a basis

$$
\left\{e_{0}, e_{1}, a e_{0}, a^{3} e_{1}, b^{3} e_{0}, b e_{1}, a^{3} b^{3} e_{0}, a b e_{1}\right\} .
$$

The ordinary quiver of $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}$, denoted by $Q:=Q_{\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}}$, is

Theorem.
We have that $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}} \simeq \mathbb{k} Q / I$, where

$$
I=\left\langle\alpha_{1} \beta_{1}, \alpha_{2} \beta_{2}, \beta_{1} \alpha_{1}, \beta_{2} \alpha_{2}, \alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}, \beta_{1} \alpha_{2}+\beta_{2} \alpha_{1}\right\rangle
$$

is the kernel of the algebra epimorphism $\varphi: \mathbb{k} Q \rightarrow \mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}$ defined by

$$
\varphi\left(\alpha_{1}\right)=a^{3} e_{1}, \quad \varphi\left(\alpha_{2}\right)=b e_{1}, \quad \varphi\left(\beta_{1}\right)=a e_{0}, \quad \varphi\left(\beta_{2}\right)=b^{3} e_{0}
$$

and $\varphi\left(\varepsilon_{i}\right)=e_{i}$.

Theorem.
We have that $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}} \simeq \mathbb{k} Q / I$, where

$$
I=\left\langle\alpha_{1} \beta_{1}, \alpha_{2} \beta_{2}, \beta_{1} \alpha_{1}, \beta_{2} \alpha_{2}, \alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}, \beta_{1} \alpha_{2}+\beta_{2} \alpha_{1}\right\rangle
$$

is the kernel of the algebra epimorphism $\varphi: \mathbb{k} Q \rightarrow \mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}$ defined by

$$
\varphi\left(\alpha_{1}\right)=a^{3} e_{1}, \quad \varphi\left(\alpha_{2}\right)=b e_{1}, \quad \varphi\left(\beta_{1}\right)=a e_{0}, \quad \varphi\left(\beta_{2}\right)=b^{3} e_{0}
$$

and $\varphi\left(\varepsilon_{i}\right)=e_{i}$.
Corollary
$\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}$ is a special biserial algebra. Particularly, $\mathfrak{u}(\mathfrak{m})^{b}$ is tame representation type.

Theorem.
We have that $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}} \simeq \mathbb{k} Q / I$, where

$$
I=\left\langle\alpha_{1} \beta_{1}, \alpha_{2} \beta_{2}, \beta_{1} \alpha_{1}, \beta_{2} \alpha_{2}, \alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}, \beta_{1} \alpha_{2}+\beta_{2} \alpha_{1}\right\rangle
$$

is the kernel of the algebra epimorphism $\varphi: \mathbb{k} Q \rightarrow \mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}$ defined by

$$
\varphi\left(\alpha_{1}\right)=a^{3} e_{1}, \quad \varphi\left(\alpha_{2}\right)=b e_{1}, \quad \varphi\left(\beta_{1}\right)=a e_{0}, \quad \varphi\left(\beta_{2}\right)=b^{3} e_{0}
$$

and $\varphi\left(\varepsilon_{i}\right)=e_{i}$.
Corollary
$\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}$ is a special biserial algebra. Particularly, $\mathfrak{u}(\mathfrak{m})^{b}$ is tame representation type.

Corollary
Since $\mathfrak{u}(\mathfrak{m})$ is Morita equivalent to $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}$ it follows that $\mathfrak{u}(\mathfrak{m})$ is tame representation type.

The classification of all indecomposable modules of a special biserial algebra was given in [4, Proposition 2.3].

The classification of all indecomposable modules of a special biserial algebra was given in [4, Proposition 2.3].

They are either string modules or band modules.
\rightsquigarrow The classification of all indecomposable modules of a special biserial algebra was given in [4, Proposition 2.3].

They are either string modules or band modules.
\rightsquigarrow Determining strings and bands in $\mathbb{k} Q / I$ is a combinatorial problem.
\rightsquigarrow The classification of all indecomposable modules of a special biserial algebra was given in [4, Proposition 2.3].

They are either string modules or band modules.
Determining strings and bands in $\mathbb{k} Q / I$ is a combinatorial problem.

In our case, for instance, consider words in the vocabulary
$\left\{\alpha_{i}^{ \pm 1}, \beta_{i}^{ \pm 1}: i=1,2\right\}$.
\rightsquigarrow The classification of all indecomposable modules of a special biserial algebra was given in [4, Proposition 2.3].

They are either string modules or band modules.
Determining strings and bands in $\mathbb{k} Q / I$ is a combinatorial problem.

In our case, for instance, consider words in the vocabulary $\left\{\alpha_{i}^{ \pm 1}, \beta_{i}^{ \pm 1}: i=1,2\right\}$.
The words $a=\alpha_{1} \alpha_{1}^{-1} \alpha_{2}$ and $b=\alpha_{1} \beta_{2}$ are not string. In fact, a is not a string because $\alpha_{1} \alpha_{1}^{-1}$ is a "piece" of a and b is not a string because $\alpha_{1} \beta_{2}$ is a monomial of the binomial relation $\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}$.
$\rightsquigarrow \quad$ The classification of all indecomposable modules of a special biserial algebra was given in [4, Proposition 2.3].

They are either string modules or band modules.
\rightsquigarrow Determining strings and bands in $\mathbb{k} Q / I$ is a combinatorial problem.

In our case, for instance, consider words in the vocabulary $\left\{\alpha_{i}^{ \pm 1}, \beta_{i}^{ \pm 1}: i=1,2\right\}$.
The words $a=\alpha_{1} \alpha_{1}^{-1} \alpha_{2}$ and $b=\alpha_{1} \beta_{2}$ are not string. In fact, a is not a string because $\alpha_{1} \alpha_{1}^{-1}$ is a "piece" of a and b is not a string because $\alpha_{1} \beta_{2}$ is a monomial of the binomial relation $\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}$.

The words $s=\alpha_{1} \alpha_{2}^{-1} \alpha_{1}$ and $t=\beta_{1}^{-1} \beta_{2}$ are examples of strings.

String

Consider the words $s_{1}=\alpha_{1} \alpha_{2}^{-1}$, $s_{2}=\alpha_{1}^{-1} \alpha_{2}, s_{3}=\beta_{1} \beta_{2}^{-1}$ and $s_{4}=\beta_{1}^{-1} \beta_{2}$ and r an integer. The families of string in Q are the following:

$$
\begin{array}{lll}
w_{1}(r)=s_{1}^{r}, & w_{2}(r)=s_{2}^{r}, & r \geq 1 \\
w_{3}(r)=s_{3}^{r}, & w_{4}(r)=s_{4}^{r}, & r \geq 1 \\
w_{5}(r)=s_{1}^{r} \alpha_{1}, & w_{6}(r)=\left(s_{1}^{-1}\right)^{r} \alpha_{2}, & r \geq 0 \\
w_{7}(r)=s_{3}^{r} \beta_{1}, & w_{8}(r)=\left(s_{3}^{-1}\right)^{r} \beta_{2}, & r \geq 0
\end{array}
$$

String

Consider the words $s_{1}=\alpha_{1} \alpha_{2}^{-1}$, $s_{2}=\alpha_{1}^{-1} \alpha_{2}, s_{3}=\beta_{1} \beta_{2}^{-1}$ and $s_{4}=\beta_{1}^{-1} \beta_{2}$ and r an integer. The families of string in Q are the following:

$$
\begin{array}{lll}
w_{1}(r)=s_{1}^{r}, & w_{2}(r)=s_{2}^{r}, & r \geq 1 \\
w_{3}(r)=s_{3}^{r}, & w_{4}(r)=s_{4}^{r}, & r \geq 1 \\
w_{5}(r)=s_{1}^{r} \alpha_{1}, & w_{6}(r)=\left(s_{1}^{-1}\right)^{r} \alpha_{2}, & r \geq 0 \\
w_{7}(r)=s_{3}^{r} \beta_{1}, & w_{8}(r)=\left(s_{3}^{-1}\right)^{r} \beta_{2}, & r \geq 0
\end{array}
$$

Similarly, we have the notion of band. For our case, there are 2 families of band in Q.

In order to illustrate how to associate an indecomposable module to a string, we consider the string $w_{1}(1)=s_{1}=\alpha_{1} \alpha_{2}^{-1}$:

$$
1 \xrightarrow{\alpha_{1}} 2 \stackrel{\alpha_{2}}{\longleftrightarrow} 1
$$

In order to illustrate how to associate an indecomposable module to a string, we consider the string $w_{1}(1)=s_{1}=\alpha_{1} \alpha_{2}^{-1}$:

$$
1 \stackrel{\alpha_{1}}{\longleftrightarrow} 2 \stackrel{\alpha_{2}}{\leftarrow} 1
$$

The right $\mathbb{k} Q / I$-module $U\left(w_{1}(1)\right):=\mathbb{k}\left\{u_{1}, u_{2}, u_{3}\right\}$ (a vector for each vertex) is given by:

$$
\begin{aligned}
& u_{1} \cdot \epsilon_{1}=u_{1}, \quad u_{1} \cdot \epsilon_{2}=0, \quad u_{1} \cdot \alpha_{1}=u_{2}, \quad u_{1} \cdot \alpha_{2}=0, \\
& u_{2} \cdot \epsilon_{1}=0, \quad u_{2} \cdot \epsilon_{2}=u_{2}, \quad u_{2} \cdot \alpha_{1}=0, \quad u_{2} \cdot \alpha_{2}=0, \\
& u_{3} \cdot \epsilon_{1}=u_{3}, \quad u_{3} \cdot \epsilon_{2}=0, \quad u_{3} \cdot \alpha_{1}=0, \quad u_{3} \cdot \alpha_{2}=u_{2},
\end{aligned}
$$

The algebra isomorphism $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}} \simeq \mathbb{k} Q / /$ and an anti-isomorphism of Hopf algebras $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}} \rightarrow \mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}$ induce on $U\left(w_{1}(1)\right)$ a left $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}$-module structure via

The algebra isomorphism $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}} \simeq \mathbb{k} Q / /$ and an anti-isomorphism of Hopf algebras $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}} \rightarrow \mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}$ induce on $U\left(w_{1}(1)\right)$ a left $\mathfrak{u}(\mathfrak{m})^{\mathrm{b}}$-module structure via

$$
\begin{array}{lll}
e_{1} \cdot u_{1}=u_{1}, & e_{2} \cdot u_{1}=0, & a e_{1} \cdot u_{1}=u_{2}, \\
b^{3} e_{1} \cdot e u_{1}=0 \\
e_{1} \cdot u_{2}=0, & e_{2} \cdot u_{2}=u_{2}, & a e_{1} \cdot u_{2}=0, \\
b^{3} e_{1} \cdot u_{2}=0 \\
e_{1} \cdot u_{3}=u_{3}, & e_{2} \cdot u_{3}=0, & a e_{1} \cdot u_{3}=0,
\end{array} \quad b^{3} e_{1} \cdot u_{3}=u_{2} . ~ \$
$$

The algebra isomorphism $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}} \simeq \mathbb{k} Q / /$ and an anti-isomorphism of Hopf algebras $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}} \rightarrow \mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}$ induce on $U\left(w_{1}(1)\right)$ a left $\mathfrak{u}(\mathfrak{m})^{\mathrm{b}}$-module structure via

$$
\begin{array}{lll}
e_{1} \cdot u_{1}=u_{1}, & e_{2} \cdot u_{1}=0, & a e_{1} \cdot u_{1}=u_{2}, \\
b^{3} e_{1} \cdot e u_{1}=0, \\
e_{1} \cdot u_{2}=0, & e_{2} \cdot u_{2}=u_{2}, & a e_{1} \cdot u_{2}=0, \\
b^{3} e_{1} \cdot u_{2}=0, \\
e_{1} \cdot u_{3}=u_{3}, & e_{2} \cdot u_{3}=0, & a e_{1} \cdot u_{3}=0,
\end{array} b^{3} e_{1} \cdot u_{3}=u_{2} . ~ \$
$$

The other elements of the basis of $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}$ act trivially.

The functors

$$
\begin{aligned}
\operatorname{Ind}_{e}:=_{\mathfrak{u}(\mathfrak{m})^{\mathrm{b}}} \mathcal{M} \rightarrow_{\mathfrak{u}(\mathfrak{m})} \mathcal{M}, & \operatorname{Ind}_{e}(N)=\mathfrak{u}(\mathfrak{m}) e \otimes_{\mathfrak{u}(\mathfrak{m})^{\mathrm{b}}} N, \\
\operatorname{Res}_{e}:=_{\mathfrak{u}(\mathfrak{m})^{\prime}} \mathcal{M} \rightarrow_{\mathfrak{u}(\mathfrak{m})^{\mathrm{b}}} \mathcal{M}, & \operatorname{Res}_{e}(M)=e M
\end{aligned}
$$

are inverse equivalences of categories.

The functors

$$
\begin{aligned}
\operatorname{Ind}_{e}: & ={ }_{\mathfrak{u}(\mathfrak{m})^{\mathrm{b}}} \mathcal{M} \rightarrow_{\mathfrak{u}(\mathfrak{m})} \mathcal{M}, & \operatorname{Ind}_{e}(N) & =\mathfrak{u}(\mathfrak{m}) e \otimes_{\mathfrak{u}(\mathfrak{m})^{\mathrm{b}}} N, \\
\operatorname{Res}_{e}: & ={ }_{\mathfrak{u}(\mathfrak{m})^{\prime}} \mathcal{M} \rightarrow_{\mathfrak{u}(\mathfrak{m})^{\mathrm{b}}} \mathcal{M}, & \operatorname{Res}_{e}(M) & =e M
\end{aligned}
$$

are inverse equivalences of categories.
Thus $^{I_{n d}}{ }_{e}\left(U\left(w_{1}(1)\right)\right)$ is the following 5 -dimensional left $\mathfrak{u}(\mathfrak{m})$-module

where the arrows oriented from left to right indicate the action of a while the arrows from right to left are the action of b.

Category of finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})$-modules
The non-isomorphic finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})$-modules are:
$\rightsquigarrow \quad$ the 8 families of string modules,

Category of finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})$-modules
The non-isomorphic finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})$-modules are:
$\rightsquigarrow \quad$ the 8 families of string modules,
$\rightsquigarrow \quad$ the 2 families of band modules,

Category of finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})$-modules
The non-isomorphic finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})$-modules are:
$\rightsquigarrow \quad$ the 8 families of string modules,
$\rightsquigarrow \quad$ the 2 families of band modules,
$\rightsquigarrow \quad$ the 2 simple modules and its respective projective covers.

Category of finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})$-modules
The non-isomorphic finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})$-modules are:
$\rightsquigarrow \quad$ the 8 families of string modules,
$\rightsquigarrow \quad$ the 2 families of band modules,
$\rightsquigarrow \quad$ the 2 simple modules and its respective projective covers.
Next step
Determine the fusion rules. Precisely, for all finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})$-modules U and V, calculate the decomposition of $U \otimes_{\mathbb{k}} V$ in direct sum of indecomposable modules.

References

References

[1] N. Andruskiewitsch, I. Angiono and I. Heckenberger. On finite GK-dimensional Nichols algebras over abelian groups. Mem. Amer. Math. Soc. 271, No. 1329 (2021).
[2] I. Assem, D. Simson, A. Skowroński. Elements of the Representation Theory of Associative Algebras. Lond. Math. Soc. Stud. Texts 65, Cambridge Univ. Press (2006).
[3] C. Cibils, A. Lauve, S. Witherspoon. Hopf quivers and Nichols algebras in positive characteristic. Proc. Amer. Math. Soc. 137 (12), 4029-4041 (2009) .
[4] B. Wald and J. Waschbüsch Tame biserial algebras. J. Algebra 95, 480-500 (1985).

Thank you!

