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In what follows, k is an algebraically closed �eld of characteristic 2.

Restricted Jordan plane

It is the algebra B of dimension 24 presented by generators x1, x2
with de�ning relations

x21 = 0, x22x1 = x1x
2
2 + x1x2x1, (1)

x42 = 0, x1x2x1x2 = x2x1x2x1. (2)

Bosonization
Let Γ = 〈g〉 be the cyclic group of order 2, written multiplicatively.
The bosonization H := B#kΓ is a pointed Hopf algebra of
dimension 25 generated by x1, x2, g with satis�es the previous
relations and

gx1 = x1g , gx2 = x2g + x1g , g2 = 1. (3)

The coproduct of H is given by

∆(g) = g ⊗ g , ∆(xi ) = xi ⊗ 1 + g ⊗ xi , i ∈ I2.
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Drinfeld double of H
The Drinfeld double of H is D(H) = H ⊗ H∗ op as coalgebra. As
algebra, D(H) is generated by x1, x2, g ,w1,w2, γ with relations
(1),(2), (3) and

w2
1 = 0, w2

2w1 = w1w
2
2 + w1w2w1,

w4
2 = 0, w1w2w1w2 = w2w1w2w1,

γ2 = γ, wiγ = γwi + wi ,

w1x1 = x1w1, w1x2 = x2w1 + 1 + g ,

w1g = gw1, w2x1 = x1(w1 + w2) + 1 + g ,

w2g = g(w1 + w2), γxi = xiγ + xi ,

w2x2 = x2w + gγ,

We have dimD(H) = 210.



The Drinfeld double D(H) u(m) is tame type representation Indecomposable modules of u(m)

Drinfeld double of H
The Drinfeld double of H is D(H) = H ⊗ H∗ op as coalgebra. As
algebra, D(H) is generated by x1, x2, g ,w1,w2, γ with relations
(1),(2), (3) and

w2
1 = 0, w2

2w1 = w1w
2
2 + w1w2w1,

w4
2 = 0, w1w2w1w2 = w2w1w2w1,

γ2 = γ, wiγ = γwi + wi ,

w1x1 = x1w1, w1x2 = x2w1 + 1 + g ,

w1g = gw1, w2x1 = x1(w1 + w2) + 1 + g ,

w2g = g(w1 + w2), γxi = xiγ + xi ,

w2x2 = x2w + gγ,

We have dimD(H) = 210.



The Drinfeld double D(H) u(m) is tame type representation Indecomposable modules of u(m)

Drinfeld double of H
The Drinfeld double of H is D(H) = H ⊗ H∗ op as coalgebra. As
algebra, D(H) is generated by x1, x2, g ,w1,w2, γ with relations
(1),(2), (3) and

w2
1 = 0, w2

2w1 = w1w
2
2 + w1w2w1,

w4
2 = 0, w1w2w1w2 = w2w1w2w1,

γ2 = γ, wiγ = γwi + wi ,

w1x1 = x1w1, w1x2 = x2w1 + 1 + g ,

w1g = gw1, w2x1 = x1(w1 + w2) + 1 + g ,

w2g = g(w1 + w2), γxi = xiγ + xi ,

w2x2 = x2w + gγ,

We have dimD(H) = 210.



The Drinfeld double D(H) u(m) is tame type representation Indecomposable modules of u(m)

Fix the following elements in D(H):

x21 = x1x2 + x2x1, w21 = w1w2 + w2w1.

Central Hopf subalgebra

The subalgebra T of D(H) generated by x1, x21, w1, w21 and g is a
normal local commutative Hopf subalgebra with de�ning relations

x21 = 0, x221 = 0, w2
1 = 0, w2

21 = 0, g2 = 1.

Also dimT = 25.

Hence
T

ι
↪→ D(H)

π
� D(H)/D(H)T+

is an exact sequence of Hopf algebras.
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We �x the following elements of D(H)/D(H)T+:

a = x2, b = w2, c = γ.

Hopf algebra quotient

The algebra D(H)/D(H)T+ is generated by a, b, c and satis�es the
relations

ab + ba = c , ac + ca = a, bc + cb = b,

a4 = b4 = 0, c2 + c = 0.

The Hopf algebra D(H)/D(H)T+ is a well-known algebra in
modular Lie theory.
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Denote by s the unique, up to isomorphism, simple Lie algebra of
dimension 3, that is, s has a basis {e, f , h} and bracket

[e, f ] = h, [e, h] = e, [f , h] = f .

The Lie algebra s is not restricted. The minimal 2-envelope of s is
a 5-dimensional Lie algebra m.

The algebra u(m)

The restricted enveloping algebra u(m) of m is isomorphic to
D(H)/D(H)T+ via

e 7→ a, f 7→ b, h 7→ c .

and we have an exact sequence of Hopf algebras

T
ι
↪→ D(H)

π
� u(m)

For this reason we are interested in the representations of u(m).
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Let V0, respectively V1, denote the one-dimensional u(m)-module,
respectively the three dimensional u(m)-module s with the adjoint
representation ad.

Thus V1 in the basis {v1, v2, v3} := {b, c , a} of s is given by
ad a = A, ad b = B, ad c = C, where

A =

0 0 0
1 0 0
0 1 0

 , B =

0 1 0
0 0 1
0 0 0

 , C =

1 0 0
0 0 0
0 0 1

 .

Theorem.
The simple modules of u(m) are V0 and V1.
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Consider the following 8-dimensional u(m)-module M

v4

v1
��
v2

��
bb v3bb

00

w2
��

SS

w3
��

cc w4cc

w1

00
SS

where the arrows oriented from left to right indicate the action of a
while the arrows from right to left are the action of b.

Theorem.

 The projective cover of the simple module V0 is P(V0) = M.

 P(V0) ' u(m)e0, where e0 = (1 + ab + a2b2)(1 + c) is a
primitive idempotent of u(m).
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Consider the following 8-dimensional u(m)-module N

v2
$$
v3

$$
ee v4ee

v1

//

w4.

YY

w1
$$

XX

w2
$$

ee

WW

w3ee

WW

//

Theorem.

 The projective cover of the simple module V1 is P(V1) = N.

 P(V1) ' u(m)e1, where e1 = (1 + a2b2)c is a primitive
idempotent of u(m).
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Let e = e0 + e1 where e0 and e1 are the primitive idempotents in
u(m) generating the projective covers P(V0) and P(V1). Then the
basic algebra associated to u(m) is

u(m)b = eu(m)e.

The basic algebra u(m)b has a basis

{e0, e1, ae0, a3e1, b3e0, be1, a3b3e0, abe1}.

The ordinary quiver of u(m)b, denoted by Q := Qu(m)b , is

1

α2

&&

α1

��
2.

β1

ff

β2

\\
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Theorem.
We have that u(m)b ' kQ/I , where

I = 〈α1β1, α2β2, β1α1, β2α2, α1β2 + α2β1, β1α2 + β2α1〉

is the kernel of the algebra epimorphism ϕ : kQ → u(m)b de�ned by

ϕ(α1) = a3e1, ϕ(α2) = be1, ϕ(β1) = ae0, ϕ(β2) = b3e0,

and ϕ(εi ) = ei .

Corollary

u(m)b is a special biserial algebra. Particularly, u(m)b is tame
representation type.

Corollary

Since u(m) is Morita equivalent to u(m)b it follows that u(m) is
tame representation type.
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 The classi�cation of all indecomposable modules of a special
biserial algebra was given in [4, Proposition 2.3].

 They are either string modules or band modules.

 Determining strings and bands in kQ/I is a combinatorial
problem.

In our case, for instance, consider words in the vocabulary
{α±1

i , β±1
i : i = 1, 2}.

The words a = α1α
−1
1 α2 and b = α1β2 are not string. In fact, a is

not a string because α1α
−1
1 is a �piece" of a and b is not a string

because α1β2 is a monomial of the binomial relation α1β2 + α2β1.

The words s = α1α
−1
2 α1 and t = β−1

1 β2 are examples of strings.
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 Determining strings and bands in kQ/I is a combinatorial
problem.

In our case, for instance, consider words in the vocabulary
{α±1

i , β±1
i : i = 1, 2}.

The words a = α1α
−1
1 α2 and b = α1β2 are not string. In fact, a is

not a string because α1α
−1
1 is a �piece" of a and b is not a string

because α1β2 is a monomial of the binomial relation α1β2 + α2β1.

The words s = α1α
−1
2 α1 and t = β−1

1 β2 are examples of strings.
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String

Consider the words s1 = α1α
−1
2 , s2 = α−1

1 α2, s3 = β1β
−1
2 and

s4 = β−1
1 β2 and r an integer. The families of string in Q are the

following:

w1(r) = sr1, w2(r) = sr2, r ≥ 1,

w3(r) = sr3, w4(r) = sr4, r ≥ 1,

w5(r) = sr1α1, w6(r) = (s−1
1 )rα2, r ≥ 0

w7(r) = sr3β1, w8(r) = (s−1
3 )rβ2, r ≥ 0.

Similarly, we have the notion of band. For our case, there are 2
families of band in Q.
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In order to illustrate how to associate an indecomposable module to
a string, we consider the string w1(1) = s1 = α1α

−1
2 :

1
α1 // 2 1

α2oo

The right kQ/I -module U(w1(1)) := k{u1, u2, u3} (a vector for
each vertex) is given by:

u1 · ε1 = u1, u1 · ε2 = 0, u1 · α1 = u2, u1 · α2 = 0,

u2 · ε1 = 0, u2 · ε2 = u2, u2 · α1 = 0, u2 · α2 = 0,

u3 · ε1 = u3, u3 · ε2 = 0, u3 · α1 = 0, u3 · α2 = u2,
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The algebra isomorphism u(m)b ' kQ/I and an anti-isomorphism
of Hopf algebras u(m)b → u(m)b induce on U(w1(1)) a left
u(m)b-module structure via

e1 · u1 = u1, e2 · u1 = 0, ae1 · u1 = u2, b3e1 · eu1 = 0,

e1 · u2 = 0, e2 · u2 = u2, ae1 · u2 = 0, b3e1 · u2 = 0,

e1 · u3 = u3, e2 · u3 = 0, ae1 · u3 = 0, b3e1 · u3 = u2.

The other elements of the basis of u(m)b act trivially.
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The functors

Inde : =u(m)bM→u(m)M, Inde(N) = u(m)e ⊗u(m)b N,

Rese : =u(m)M→u(m)bM, Rese(M) = eM

are inverse equivalences of categories.

Thus Inde (U(w1(1))) is the following 5-dimensional left
u(m)-module

e1 ⊗ u1
$$

e2 ⊗ u2
%%

ae2 ⊗ u2

))

ee a2e2 ⊗ u2gg e1 ⊗ u3,ff

where the arrows oriented from left to right indicate the action of a
while the arrows from right to left are the action of b.
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Category of �nite-dimensional indecomposable left
u(m)-modules

The non-isomorphic �nite-dimensional indecomposable left
u(m)-modules are:

 the 8 families of string modules,

 the 2 families of band modules,

 the 2 simple modules and its respective projective covers.

Next step

Determine the fusion rules. Precisely, for all �nite-dimensional
indecomposable left u(m)-modules U and V , calculate the
decomposition of U ⊗k V in direct sum of indecomposable modules.
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Thank you!
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