u(m) is tame type representation 00000 Indecomposable modules of $u(\mathfrak{m})$ 0000000

Representations of the restricted enveloping algebra $\mathfrak{u}(\mathfrak{m})$ in characteristic 2

Dirceu Bagio dirceu.bagio@ufsm.br Federal University of Santa Maria

Cimpa School, Florianópolis February 7, 2021

* This is a work in progress with N. Andruskiewitsch, S. D. Flora and D. Flores.

u(m) is tame type representation 00000 Indecomposable modules of $\mathfrak{u}(\mathfrak{m})$ 0000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Outline

▷ The Drinfeld double D(H) of the restricted Jordan plane.

u(m) is tame type representation 00000 Indecomposable modules of $\mathfrak{u}(\mathfrak{m})$ 0000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

- ▷ The Drinfeld double D(H) of the restricted Jordan plane.
- \triangleright D(H) as an abelian extension:

 $\mathfrak{u}(\mathfrak{m})$ is tame type representation 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

- ▷ The Drinfeld double D(H) of the restricted Jordan plane.
- \triangleright D(H) as an abelian extension:

$$\mathsf{T}\stackrel{\iota}{\hookrightarrow} D(H)\stackrel{\pi}{\twoheadrightarrow}\mathfrak{u}(\mathfrak{m})$$

 \triangleright $\mathfrak{u}(\mathfrak{m})$ is of tame representation type.

u(m) is tame type representation 00000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline

- ▷ The Drinfeld double D(H) of the restricted Jordan plane.
- \triangleright D(H) as an abelian extension:

$$\mathsf{T}\stackrel{\iota}{\hookrightarrow} D(H)\stackrel{\pi}{\twoheadrightarrow}\mathfrak{u}(\mathfrak{m})$$

- \triangleright $\mathfrak{u}(\mathfrak{m})$ is of tame representation type.
- \triangleright Indecomposable representations of $\mathfrak{u}(\mathfrak{m})$.

u(m) is tame type representation 00000 Indecomposable modules of $\mathfrak{u}(\mathfrak{m})$ 0000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In what follows, \Bbbk is an algebraically closed field of characteristic 2.

u(m) is tame type representation 00000 Indecomposable modules of $u(\mathfrak{m})$ 0000000

In what follows, \Bbbk is an algebraically closed field of characteristic 2.

Restricted Jordan plane

It is the algebra ${\mathscr B}$ of dimension 2^4 presented by generators x_1,x_2 with defining relations

$$\begin{aligned} x_1^2 &= 0, & x_2^2 x_1 = x_1 x_2^2 + x_1 x_2 x_1, & (1) \\ x_2^4 &= 0, & x_1 x_2 x_1 x_2 = x_2 x_1 x_2 x_1. & (2) \end{aligned}$$

In what follows, \Bbbk is an algebraically closed field of characteristic 2.

Restricted Jordan plane

It is the algebra \mathscr{B} of dimension 2⁴ presented by generators x_1, x_2 with defining relations

$$\begin{aligned} x_1^2 &= 0, & x_2^2 x_1 = x_1 x_2^2 + x_1 x_2 x_1, & (1) \\ x_2^4 &= 0, & x_1 x_2 x_1 x_2 = x_2 x_1 x_2 x_1. & (2) \end{aligned}$$

$$=0, x_1 x_2 x_1 x_2 = x_2 x_1 x_2 x_1. (2)$$

Bosonization

Let $\Gamma = \langle g \rangle$ be the cyclic group of order 2, written multiplicatively. The bosonization $H := \mathscr{B} \# \Bbbk \Gamma$ is a pointed Hopf algebra of dimension 2⁵ generated by x_1, x_2, g with satisfies the previous relations and

$$gx_1 = x_1g,$$
 $gx_2 = x_2g + x_1g,$ $g^2 = 1.$ (3)

The coproduct of H is given by $\Delta(g) = g \otimes g, \qquad \Delta(x_i) = x_i \otimes 1 + g \otimes x_i, \quad i \in \mathbb{I}_2.$

Indecomposable modules of $\mathfrak{u}(\mathfrak{m})$ 0000000

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

Drinfeld double of H

The Drinfeld double of H is $D(H) = H \otimes H^{* \text{ op}}$ as coalgebra. As algebra, D(H) is generated by $x_1, x_2, g, w_1, w_2, \gamma$ with relations (1),(2), (3) and

The Drinfeld double D(H) $0 \bullet 0 \circ 0$ u(m) is tame type representation 00000

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

Drinfeld double of H

The Drinfeld double of H is $D(H) = H \otimes H^{* \text{ op}}$ as coalgebra. As algebra, D(H) is generated by $x_1, x_2, g, w_1, w_2, \gamma$ with relations (1),(2), (3) and

$w_1^2 = 0,$	$w_2^2 w_1 = w_1 w_2^2 + w_1 w_2 w_1,$
$w_2^4 = 0,$	$w_1w_2w_1w_2 = w_2w_1w_2w_1,$
$\gamma^2 = \gamma,$	$w_i\gamma=\gamma w_i+w_i,$
$w_1x_1=x_1w_1,$	$w_1 x_2 = x_2 w_1 + 1 + g,$
$w_1g = gw_1,$	$w_2x_1 = x_1(w_1 + w_2) + 1 + g$
$w_2g=g(w_1+w_2),$	$\gamma x_i = x_i \gamma + x_i,$
$w_2 x_2 = x_2 w + g \gamma,$	

The Drinfeld double D(H) $0 \bullet 0 \circ 0$ u(m) is tame type representation 00000

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Drinfeld double of H

The Drinfeld double of H is $D(H) = H \otimes H^{* \text{ op}}$ as coalgebra. As algebra, D(H) is generated by $x_1, x_2, g, w_1, w_2, \gamma$ with relations (1),(2), (3) and

$w_1^2=0,$	$w_2^2 w_1 = w_1 w_2^2 + w_1 w_2 w_1,$
$w_2^4 = 0,$	$w_1 w_2 w_1 w_2 = w_2 w_1 w_2 w_1,$
$\gamma^2 = \gamma,$	$w_i\gamma=\gamma w_i+w_i,$
$w_1x_1=x_1w_1,$	$w_1 x_2 = x_2 w_1 + 1 + g,$
$w_1g = gw_1,$	$w_2 x_1 = x_1(w_1 + w_2) + 1 + g_2$
$w_2g=g(w_1+w_2),$	$\gamma x_i = x_i \gamma + x_i,$
$w_2 x_2 = x_2 w + g \gamma,$	

We have dim $D(H) = 2^{10}$.

Indecomposable modules of $u(\mathfrak{m})$ 0000000

Fix the following elements in D(H):

 $x_{21} = x_1 x_2 + x_2 x_1,$ $w_{21} = w_1 w_2 + w_2 w_1.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Fix the following elements in D(H):

 $x_{21} = x_1 x_2 + x_2 x_1,$ $w_{21} = w_1 w_2 + w_2 w_1.$

Central Hopf subalgebra

The subalgebra **T** of D(H) generated by x_1 , x_{21} , w_1 , w_{21} and g is a normal local commutative Hopf subalgebra with defining relations

$$x_1^2 = 0,$$
 $x_{21}^2 = 0,$ $w_1^2 = 0,$ $w_{21}^2 = 0,$ $g^2 = 1.$

Also dim $\mathbf{T} = 2^5$.

Fix the following elements in D(H):

 $x_{21} = x_1 x_2 + x_2 x_1,$ $w_{21} = w_1 w_2 + w_2 w_1.$

Central Hopf subalgebra

The subalgebra **T** of D(H) generated by x_1 , x_{21} , w_1 , w_{21} and g is a normal local commutative Hopf subalgebra with defining relations

$$x_1^2 = 0,$$
 $x_{21}^2 = 0,$ $w_1^2 = 0,$ $w_{21}^2 = 0,$ $g^2 = 1.$

Also dim $\mathbf{T} = 2^5$.

Hence

$$\mathbf{T} \stackrel{\iota}{\hookrightarrow} D(H) \stackrel{\pi}{\twoheadrightarrow} D(H)/D(H)\mathbf{T}^+$$

is an exact sequence of Hopf algebras.

 $\mathfrak{u}(\mathfrak{m})$ is tame type representation 00000

Indecomposable modules of $\mathfrak{u}(\mathfrak{m})$ 0000000

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

We fix the following elements of $D(H)/D(H)T^+$:

$$a=\overline{x}_2, \qquad b=\overline{w}_2, \qquad c=\overline{\gamma}.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

We fix the following elements of $D(H)/D(H)T^+$:

$$a=\overline{x}_2, \qquad b=\overline{w}_2, \qquad c=\overline{\gamma}.$$

Hopf algebra quotient

The algebra $D(H)/D(H)\mathbf{T}^+$ is generated by a, b, c and satisfies the relations

$$ab + ba = c$$
, $ac + ca = a$, $bc + cb = b$,
 $a^4 = b^4 = 0$, $c^2 + c = 0$.

We fix the following elements of $D(H)/D(H)T^+$:

$$a=\overline{x}_2, \qquad b=\overline{w}_2, \qquad c=\overline{\gamma}.$$

Hopf algebra quotient

The algebra $D(H)/D(H)\mathbf{T}^+$ is generated by a, b, c and satisfies the relations

$$ab + ba = c$$
, $ac + ca = a$, $bc + cb = b$,
 $a^4 = b^4 = 0$, $c^2 + c = 0$.

The Hopf algebra $D(H)/D(H)T^+$ is a well-known algebra in modular Lie theory.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

The Drinfeld double D(H)0000 \bullet

u(m) is tame type representation 00000 Indecomposable modules of $\mathfrak{u}(\mathfrak{m})$ 00000000

Denote by \mathfrak{s} the unique, up to isomorphism, simple Lie algebra of dimension 3, that is, \mathfrak{s} has a basis $\{e, f, h\}$ and bracket

$$[e, f] = h,$$
 $[e, h] = e,$ $[f, h] = f.$

The Drinfeld double D(H)0000 \bullet u(m) is tame type representation 00000

Denote by \mathfrak{s} the unique, up to isomorphism, simple Lie algebra of dimension 3, that is, \mathfrak{s} has a basis $\{e, f, h\}$ and bracket

$$[e, f] = h,$$
 $[e, h] = e,$ $[f, h] = f.$

The Lie algebra \mathfrak{s} is not restricted. The minimal 2-envelope of \mathfrak{s} is a 5-dimensional Lie algebra \mathfrak{m} .

Denote by \mathfrak{s} the unique, up to isomorphism, simple Lie algebra of dimension 3, that is, \mathfrak{s} has a basis $\{e, f, h\}$ and bracket

$$[e, f] = h,$$
 $[e, h] = e,$ $[f, h] = f.$

The Lie algebra \mathfrak{s} is not restricted. The minimal 2-envelope of \mathfrak{s} is a 5-dimensional Lie algebra \mathfrak{m} .

The algebra $\mathfrak{u}(\mathfrak{m})$

The restricted enveloping algebra $\mathfrak{u}(\mathfrak{m})$ of \mathfrak{m} is isomorphic to $D(H)/D(H)\mathbf{T}^+$ via

$$e\mapsto a, \qquad f\mapsto b, \qquad h\mapsto c.$$

and we have an exact sequence of Hopf algebras

$$\mathbf{T}\stackrel{\iota}{\hookrightarrow} D(H)\stackrel{\pi}{\twoheadrightarrow}\mathfrak{u}(\mathfrak{m})$$

Denote by \mathfrak{s} the unique, up to isomorphism, simple Lie algebra of dimension 3, that is, \mathfrak{s} has a basis $\{e, f, h\}$ and bracket

$$[e, f] = h,$$
 $[e, h] = e,$ $[f, h] = f.$

The Lie algebra \mathfrak{s} is not restricted. The minimal 2-envelope of \mathfrak{s} is a 5-dimensional Lie algebra \mathfrak{m} .

The algebra $\mathfrak{u}(\mathfrak{m})$

The restricted enveloping algebra $\mathfrak{u}(\mathfrak{m})$ of \mathfrak{m} is isomorphic to $D(H)/D(H)\mathbf{T}^+$ via

$$e\mapsto a, \qquad f\mapsto b, \qquad h\mapsto c.$$

and we have an exact sequence of Hopf algebras

$$\mathbf{T} \stackrel{\iota}{\hookrightarrow} D(H) \stackrel{\pi}{\twoheadrightarrow} \mathfrak{u}(\mathfrak{m})$$

For this reason we are interested in the representations of $\mathfrak{u}(\mathfrak{m})$.

Let V_0 , respectively V_1 , denote the one-dimensional $\mathfrak{u}(\mathfrak{m})$ -module, respectively the three dimensional $\mathfrak{u}(\mathfrak{m})$ -module \mathfrak{s} with the adjoint representation ad.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Let V_0 , respectively V_1 , denote the one-dimensional $\mathfrak{u}(\mathfrak{m})$ -module, respectively the three dimensional $\mathfrak{u}(\mathfrak{m})$ -module \mathfrak{s} with the adjoint representation ad.

Thus V_1 in the basis $\{v_1, v_2, v_3\} := \{b, c, a\}$ of \mathfrak{s} is given by ad a = A, ad b = B, ad c = C, where

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Theorem.

The simple modules of $\mathfrak{u}(\mathfrak{m})$ are V_0 and V_1 .

 $\mathfrak{u}(\mathfrak{m})$ is tame type representation $\mathfrak{O} \bullet \mathfrak{O} \mathfrak{O} \mathfrak{O}$

Indecomposable modules of $\mathfrak{u}(\mathfrak{m})$ 0000000

イロト 不得 トイヨト イヨト

3

Consider the following 8-dimensional $\mathfrak{u}(\mathfrak{m})$ -module M

where the arrows oriented from left to right indicate the action of a while the arrows from right to left are the action of b.

 $\mathfrak{u}(\mathfrak{m})$ is tame type representation $\mathfrak{O} \bullet \mathfrak{O} \mathfrak{O} \mathfrak{O}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Consider the following 8-dimensional $\mathfrak{u}(\mathfrak{m})$ -module M

where the arrows oriented from left to right indicate the action of a while the arrows from right to left are the action of b.

Theorem.

- \rightsquigarrow The projective cover of the simple module V_0 is $P(V_0) = M$.
- \rightarrow $P(V_0) \simeq \mathfrak{u}(\mathfrak{m})e_0$, where $e_0 = (1 + ab + a^2b^2)(1 + c)$ is a primitive idempotent of $\mathfrak{u}(\mathfrak{m})$.

 $\mathfrak{u}(\mathfrak{m})$ is tame type representation $\mathfrak{OO} \bullet \mathfrak{OO}$

Indecomposable modules of $\mathfrak{u}(\mathfrak{m})$ 00000000

Consider the following 8-dimensional $\mathfrak{u}(\mathfrak{m})$ -module N

 $\mathfrak{u}(\mathfrak{m})$ is tame type representation $\mathfrak{OO} \bullet \mathfrak{OO}$

Indecomposable modules of $\mathfrak{u}(\mathfrak{m})$ 0000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Consider the following 8-dimensional $\mathfrak{u}(\mathfrak{m})$ -module N

Theorem.

- \rightsquigarrow The projective cover of the simple module V_1 is $P(V_1) = N$.
- \rightarrow $P(V_1) \simeq \mathfrak{u}(\mathfrak{m})e_1$, where $e_1 = (1 + a^2b^2)c$ is a primitive idempotent of $\mathfrak{u}(\mathfrak{m})$.

 $\mathfrak{u}(\mathfrak{m})$ is tame type representation $000 \bullet 0$

Indecomposable modules of $\mathfrak{u}(\mathfrak{m})$ 00000000

Let $e = e_0 + e_1$ where e_0 and e_1 are the primitive idempotents in $\mathfrak{u}(\mathfrak{m})$ generating the projective covers $P(V_0)$ and $P(V_1)$. Then the basic algebra associated to $\mathfrak{u}(\mathfrak{m})$ is

 $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}} = e\mathfrak{u}(\mathfrak{m})e.$

 $\mathfrak{u}(\mathfrak{m})$ is tame type representation $\mathfrak{OOO} \bullet \mathfrak{O}$

Let $e = e_0 + e_1$ where e_0 and e_1 are the primitive idempotents in $\mathfrak{u}(\mathfrak{m})$ generating the projective covers $P(V_0)$ and $P(V_1)$. Then the basic algebra associated to $\mathfrak{u}(\mathfrak{m})$ is

 $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}} = e\mathfrak{u}(\mathfrak{m})e.$

The basic algebra $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}$ has a basis

 $\{e_0, e_1, ae_0, a^3e_1, b^3e_0, be_1, a^3b^3e_0, abe_1\}.$

 $\mathfrak{u}(\mathfrak{m})$ is tame type representation $\mathfrak{OOO} \bullet \mathfrak{O}$

(日)

Let $e = e_0 + e_1$ where e_0 and e_1 are the primitive idempotents in $\mathfrak{u}(\mathfrak{m})$ generating the projective covers $P(V_0)$ and $P(V_1)$. Then the basic algebra associated to $\mathfrak{u}(\mathfrak{m})$ is

 $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}} = e\mathfrak{u}(\mathfrak{m})e.$

The basic algebra $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}$ has a basis

$$\{e_0, e_1, ae_0, a^3e_1, b^3e_0, be_1, a^3b^3e_0, abe_1\}.$$

The ordinary quiver of $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}$, denoted by $Q := Q_{\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}}$, is

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Theorem.

We have that $\mathfrak{u}(\mathfrak{m})^{\mathtt{b}}\simeq \Bbbk Q/I$, where

 $I = \langle \alpha_1 \beta_1, \alpha_2 \beta_2, \beta_1 \alpha_1, \beta_2 \alpha_2, \alpha_1 \beta_2 + \alpha_2 \beta_1, \beta_1 \alpha_2 + \beta_2 \alpha_1 \rangle$

is the kernel of the algebra epimorphism $arphi: \Bbbk Q o \mathfrak{u}(\mathfrak{m})^{ extsf{b}}$ defined by

$$\varphi(\alpha_1) = a^3 e_1, \quad \varphi(\alpha_2) = b e_1, \quad \varphi(\beta_1) = a e_0, \quad \varphi(\beta_2) = b^3 e_0,$$

and $\varphi(\varepsilon_i) = e_i$.

 $\mathfrak{u}(\mathfrak{m})$ is tame type representation 0000 \bullet

Theorem.

We have that $\mathfrak{u}(\mathfrak{m})^{\mathtt{b}}\simeq \Bbbk Q/I$, where

 $I = \langle \alpha_1 \beta_1, \alpha_2 \beta_2, \beta_1 \alpha_1, \beta_2 \alpha_2, \alpha_1 \beta_2 + \alpha_2 \beta_1, \beta_1 \alpha_2 + \beta_2 \alpha_1 \rangle$

is the kernel of the algebra epimorphism $arphi: \Bbbk Q o \mathfrak{u}(\mathfrak{m})^{\mathtt{b}}$ defined by

$$\varphi(\alpha_1) = a^3 e_1, \quad \varphi(\alpha_2) = b e_1, \quad \varphi(\beta_1) = a e_0, \quad \varphi(\beta_2) = b^3 e_0,$$

and $\varphi(\varepsilon_i) = e_i$.

Corollary

 $\mathfrak{u}(\mathfrak{m})^b$ is a special biserial algebra. Particularly, $\mathfrak{u}(\mathfrak{m})^b$ is tame representation type.

 $\mathfrak{u}(\mathfrak{m})$ is tame type representation 0000 \bullet

Theorem.

We have that $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}\simeq \Bbbk Q/I$, where

 $I = \langle \alpha_1 \beta_1, \alpha_2 \beta_2, \beta_1 \alpha_1, \beta_2 \alpha_2, \alpha_1 \beta_2 + \alpha_2 \beta_1, \beta_1 \alpha_2 + \beta_2 \alpha_1 \rangle$

is the kernel of the algebra epimorphism $arphi: \Bbbk Q o \mathfrak{u}(\mathfrak{m})^{\mathtt{b}}$ defined by

$$\varphi(\alpha_1) = a^3 e_1, \quad \varphi(\alpha_2) = b e_1, \quad \varphi(\beta_1) = a e_0, \quad \varphi(\beta_2) = b^3 e_0,$$

and $\varphi(\varepsilon_i) = e_i$.

Corollary

 $\mathfrak{u}(\mathfrak{m})^b$ is a special biserial algebra. Particularly, $\mathfrak{u}(\mathfrak{m})^b$ is tame representation type.

Corollary

Since $\mathfrak{u}(\mathfrak{m})$ is Morita equivalent to $\mathfrak{u}(\mathfrak{m})^b$ it follows that $\mathfrak{u}(\mathfrak{m})$ is tame representation type.

→ The classification of all indecomposable modules of a special biserial algebra was given in [4, Proposition 2.3].

 $\mathfrak{u}(\mathfrak{m})$ is tame type representation 00000

- The classification of all indecomposable modules of a special biserial algebra was given in [4, Proposition 2.3].
- \rightsquigarrow They are either string modules or band modules.

 $\mathfrak{u}(\mathfrak{m})$ is tame type representation 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- The classification of all indecomposable modules of a special biserial algebra was given in [4, Proposition 2.3].
- \rightarrow They are either string modules or band modules.
- \rightarrow Determining strings and bands in $\mathbb{k}Q/I$ is a combinatorial problem.

- → The classification of all indecomposable modules of a special biserial algebra was given in [4, Proposition 2.3].
- \rightsquigarrow They are either string modules or band modules.
- \rightarrow Determining strings and bands in $\mathbb{k}Q/I$ is a combinatorial problem.

In our case, for instance, consider words in the vocabulary $\{\alpha_i^{\pm 1}, \beta_i^{\pm 1} : i = 1, 2\}.$

- The classification of all indecomposable modules of a special biserial algebra was given in [4, Proposition 2.3].
- \rightsquigarrow They are either string modules or band modules.
- \rightarrow Determining strings and bands in $\mathbb{k}Q/I$ is a combinatorial problem.

In our case, for instance, consider words in the vocabulary $\{\alpha_i^{\pm 1}, \beta_i^{\pm 1} : i = 1, 2\}.$

The words $a = \alpha_1 \alpha_1^{-1} \alpha_2$ and $b = \alpha_1 \beta_2$ are not string. In fact, a is not a string because $\alpha_1 \alpha_1^{-1}$ is a "piece" of a and b is not a string because $\alpha_1 \beta_2$ is a monomial of the binomial relation $\alpha_1 \beta_2 + \alpha_2 \beta_1$.

(ロ)、<</p>

- The classification of all indecomposable modules of a special biserial algebra was given in [4, Proposition 2.3].
- \rightsquigarrow They are either string modules or band modules.
- \rightarrow Determining strings and bands in $\mathbb{k}Q/I$ is a combinatorial problem.

In our case, for instance, consider words in the vocabulary $\{\alpha_i^{\pm 1}, \beta_i^{\pm 1} : i = 1, 2\}.$

The words $a = \alpha_1 \alpha_1^{-1} \alpha_2$ and $b = \alpha_1 \beta_2$ are not string. In fact, a is not a string because $\alpha_1 \alpha_1^{-1}$ is a "piece" of a and b is not a string because $\alpha_1 \beta_2$ is a monomial of the binomial relation $\alpha_1 \beta_2 + \alpha_2 \beta_1$.

The words $s = \alpha_1 \alpha_2^{-1} \alpha_1$ and $t = \beta_1^{-1} \beta_2$ are examples of strings.

u(m) is tame type representation 00000 Indecomposable modules of u(m)0000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

String

Consider the words $s_1 = \alpha_1 \alpha_2^{-1}$, $s_2 = \alpha_1^{-1} \alpha_2$, $s_3 = \beta_1 \beta_2^{-1}$ and $s_4 = \beta_1^{-1} \beta_2$ and r an integer. The families of string in Q are the following:

$$\begin{split} &w_1(r)=s_1^r, & w_2(r)=s_2^r, & r\geq 1, \\ &w_3(r)=s_3^r, & w_4(r)=s_4^r, & r\geq 1, \\ &w_5(r)=s_1^r\alpha_1, & w_6(r)=(s_1^{-1})^r\alpha_2, & r\geq 0 \\ &w_7(r)=s_3^r\beta_1, & w_8(r)=(s_3^{-1})^r\beta_2, & r\geq 0. \end{split}$$

u(m) is tame type representation 00000

String

Consider the words $s_1 = \alpha_1 \alpha_2^{-1}$, $s_2 = \alpha_1^{-1} \alpha_2$, $s_3 = \beta_1 \beta_2^{-1}$ and $s_4 = \beta_1^{-1} \beta_2$ and r an integer. The families of string in Q are the following:

$w_1(r)=s_1^r,$	$w_2(r)=s_2^r,$	$r \geq 1,$
$w_3(r)=s_3^r,$	$w_4(r)=s_4^r,$	$r\geq 1,$
$w_5(r)=s_1^r\alpha_1,$	$w_6(r)=(s_1^{-1})^r\alpha_2,$	$r \ge 0$
$w_7(r)=s_3^r\beta_1,$	$w_8(r) = (s_3^{-1})^r \beta_2,$	$r \ge 0$.

Similarly, we have the notion of band. For our case, there are 2 families of band in Q.

In order to illustrate how to associate an indecomposable module to a string, we consider the string $w_1(1) = s_1 = \alpha_1 \alpha_2^{-1}$:

$$1 \xrightarrow{\alpha_1} 2 \xleftarrow{\alpha_2} 1$$

In order to illustrate how to associate an indecomposable module to a string, we consider the string $w_1(1) = s_1 = \alpha_1 \alpha_2^{-1}$:

$$1 \xrightarrow{\alpha_1} 2 \xleftarrow{\alpha_2} 1$$

The right $\mathbb{k}Q/I$ -module $U(w_1(1)) := \mathbb{k}\{u_1, u_2, u_3\}$ (a vector for each vertex) is given by:

$$\begin{array}{ll} u_1 \cdot \epsilon_1 = u_1, & u_1 \cdot \epsilon_2 = 0, & u_1 \cdot \alpha_1 = u_2, & u_1 \cdot \alpha_2 = 0, \\ u_2 \cdot \epsilon_1 = 0, & u_2 \cdot \epsilon_2 = u_2, & u_2 \cdot \alpha_1 = 0, & u_2 \cdot \alpha_2 = 0, \\ u_3 \cdot \epsilon_1 = u_3, & u_3 \cdot \epsilon_2 = 0, & u_3 \cdot \alpha_1 = 0, & u_3 \cdot \alpha_2 = u_2, \end{array}$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

The algebra isomorphism $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}} \simeq \Bbbk Q/I$ and an anti-isomorphism of Hopf algebras $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}} \to \mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}$ induce on $U(w_1(1))$ a left $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}$ -module structure via

The algebra isomorphism $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}} \simeq \mathbb{k}Q/I$ and an anti-isomorphism of Hopf algebras $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}} \to \mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}$ induce on $U(w_1(1))$ a left $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}$ -module structure via

$$\begin{array}{ll} e_1 \cdot u_1 = u_1, & e_2 \cdot u_1 = 0, & ae_1 \cdot u_1 = u_2, & b^3 e_1 \cdot eu_1 = 0, \\ e_1 \cdot u_2 = 0, & e_2 \cdot u_2 = u_2, & ae_1 \cdot u_2 = 0, & b^3 e_1 \cdot u_2 = 0, \\ e_1 \cdot u_3 = u_3, & e_2 \cdot u_3 = 0, & ae_1 \cdot u_3 = 0, & b^3 e_1 \cdot u_3 = u_2. \end{array}$$

The algebra isomorphism $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}} \simeq \mathbb{k}Q/I$ and an anti-isomorphism of Hopf algebras $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}} \to \mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}$ induce on $U(w_1(1))$ a left $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}$ -module structure via

$$\begin{array}{ll} e_1 \cdot u_1 = u_1, & e_2 \cdot u_1 = 0, & ae_1 \cdot u_1 = u_2, & b^3 e_1 \cdot eu_1 = 0, \\ e_1 \cdot u_2 = 0, & e_2 \cdot u_2 = u_2, & ae_1 \cdot u_2 = 0, & b^3 e_1 \cdot u_2 = 0, \\ e_1 \cdot u_3 = u_3, & e_2 \cdot u_3 = 0, & ae_1 \cdot u_3 = 0, & b^3 e_1 \cdot u_3 = u_2. \end{array}$$

The other elements of the basis of $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}$ act trivially.

u(m) is tame type representation

Indecomposable modules of $\mathfrak{u}(\mathfrak{m})$ 0000000

The functors

$$\begin{aligned} & \text{Ind}_e :=_{\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}} \mathcal{M} \to_{\mathfrak{u}(\mathfrak{m})} \mathcal{M}, & \text{Ind}_e(N) = \mathfrak{u}(\mathfrak{m}) e \otimes_{\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}} \mathcal{N}, \\ & \text{Res}_e :=_{\mathfrak{u}(\mathfrak{m})} \mathcal{M} \to_{\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}} \mathcal{M}, & \text{Res}_e(M) = eM \end{aligned}$$

are inverse equivalences of categories.

u(m) is tame type representation

Indecomposable modules of u(m) 00000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

The functors

$$\begin{aligned} & \text{Ind}_e :=_{\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}} \mathcal{M} \to_{\mathfrak{u}(\mathfrak{m})} \mathcal{M}, & \text{Ind}_e(N) = \mathfrak{u}(\mathfrak{m}) e \otimes_{\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}} \mathcal{N}, \\ & \text{Res}_e :=_{\mathfrak{u}(\mathfrak{m})} \mathcal{M} \to_{\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}} \mathcal{M}, & \text{Res}_e(M) = eM \end{aligned}$$

are inverse equivalences of categories.

Thus $\operatorname{Ind}_e(U(w_1(1)))$ is the following 5-dimensional left $\mathfrak{u}(\mathfrak{m})$ -module

where the arrows oriented from left to right indicate the action of a while the arrows from right to left are the action of b.

Category of finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})\text{-}\mathsf{modules}$

The non-isomorphic finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})$ -modules are:

 \rightsquigarrow the 8 families of string modules,

Category of finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})\text{-}\mathsf{modules}$

The non-isomorphic finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})$ -modules are:

- \rightsquigarrow the 8 families of string modules,
- → the 2 families of band modules,

Category of finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})\text{-}\mathsf{modules}$

The non-isomorphic finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})$ -modules are:

- \rightsquigarrow the 8 families of string modules,
- → the 2 families of band modules,
- \rightsquigarrow the 2 simple modules and its respective projective covers.

Category of finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})$ -modules

The non-isomorphic finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})$ -modules are:

- → the 8 families of string modules,
- → the 2 families of band modules,
- \rightsquigarrow the 2 simple modules and its respective projective covers.

Next step

Determine the fusion rules. Precisely, for all finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})$ -modules U and V, calculate the decomposition of $U \otimes_{\mathbb{k}} V$ in direct sum of indecomposable modules.

 $\mathfrak{u}(\mathfrak{m})$ is tame type representation 00000

Indecomposable modules of $\mathfrak{u}(\mathfrak{m})$ 00000000

 $\mathfrak{u}(\mathfrak{m})$ is tame type representation 00000

Indecomposable modules of $\mathfrak{u}(\mathfrak{m})$ 00000000

References

- N. Andruskiewitsch, I. Angiono and I. Heckenberger. On finite GK-dimensional Nichols algebras over abelian groups. Mem. Amer. Math. Soc. 271, No. 1329 (2021).
- [2] I. Assem, D. Simson, A. Skowroński. *Elements of the Representation Theory of Associative Algebras*. Lond. Math. Soc. Stud. Texts 65, Cambridge Univ. Press (2006).
- C. Cibils, A. Lauve, S. Witherspoon. Hopf quivers and Nichols algebras in positive characteristic. Proc. Amer. Math. Soc. 137 (12), 4029–4041 (2009).
- [4] B. Wald and J. Waschbüsch *Tame biserial algebras*. J. Algebra 95, 480-500 (1985).

u(m) is tame type representation 00000 Indecomposable modules of $\mathfrak{u}(\mathfrak{m})$ 0000000

Thank you!