Representations of the restricted enveloping algebra $\mathfrak{u}(\mathfrak{m})$ in characteristic 2

Dirceu Bagio dirceu bagio@ufsm.br Federal University of Santa Maria

Cimpa School, Florianópolis February 7, 2021

^{*} This is a work in progress with N. Andruskiewitsch, S. D. Flora and D. Flores.

 \triangleright The Drinfeld double D(H) of the restricted Jordan plane.

Outline

- The Drinfeld double D(H) of the restricted Jordan plane.
- D(H) as an abelian extension:

Outline

- \triangleright The Drinfeld double D(H) of the restricted Jordan plane.
- \triangleright D(H) as an abelian extension:

$$\mathsf{T} \stackrel{\iota}{\hookrightarrow} D(H) \stackrel{\pi}{\twoheadrightarrow} \mathfrak{u}(\mathfrak{m})$$

 \triangleright $\mathfrak{u}(\mathfrak{m})$ is of tame representation type.

Outline

- \triangleright The Drinfeld double D(H) of the restricted Jordan plane.
- \triangleright D(H) as an abelian extension:

$$\mathsf{T} \overset{\iota}{\hookrightarrow} D(H) \overset{\pi}{\twoheadrightarrow} \mathfrak{u}(\mathfrak{m})$$

- \triangleright $\mathfrak{u}(\mathfrak{m})$ is of tame representation type.
- \triangleright Irreducible representations of $\mathfrak{u}(\mathfrak{m})$.

In what follows, k is an algebraically closed field of characteristic 2.

In what follows, k is an algebraically closed field of characteristic 2.

Restricted Jordan plane

It is the algebra \mathcal{B} of dimension 2^4 presented by generators x_1, x_2 with defining relations

$$x_1^2 = 0,$$
 $x_2^2 x_1 = x_1 x_2^2 + x_1 x_2 x_1,$ (1)

$$x_2^4 = 0,$$
 $x_1 x_2 x_1 x_2 = x_2 x_1 x_2 x_1.$ (2)

In what follows, k is an algebraically closed field of characteristic 2.

Restricted Jordan plane

It is the algebra \mathcal{B} of dimension 2^4 presented by generators x_1, x_2 with defining relations

$$x_1^2 = 0,$$
 $x_2^2 x_1 = x_1 x_2^2 + x_1 x_2 x_1,$ (1)

$$x_2^4 = 0,$$
 $x_1 x_2 x_1 x_2 = x_2 x_1 x_2 x_1.$ (2)

Bosonization

Let $\Gamma = \langle g \rangle$ be the cyclic group of order 2, written multiplicatively. The bosonization $H := \mathcal{B} \# \mathbb{k} \Gamma$ is a pointed Hopf algebra of dimension 2^5 generated by x_1, x_2, g with satisfies the previous relations and

$$gx_1 = x_1g,$$
 $gx_2 = x_2g + x_1g,$ $g^2 = 1.$ (3)

The coproduct of H is given by

$$\Delta(g) = g \otimes g,$$
 $\Delta(x_i) = x_i \otimes 1 + g \otimes x_i, i \in \mathbb{I}_2.$

Drinfed double of H

The Drinfeld double of H is $D(H) = H \otimes H^{* \operatorname{op}}$ as coalgebra. As algebra, D(H) is generated by $x_1, x_2, g, w_1, w_2, \gamma$ with relations (1),(2),(3) and

Drinfed double of H

The Drinfeld double of H is $D(H) = H \otimes H^{* \operatorname{op}}$ as coalgebra. As algebra, D(H) is generated by $x_1, x_2, g, w_1, w_2, \gamma$ with relations (1),(2),(3) and

$$\begin{aligned} w_1^2 &= 0, & w_2^2 w_1 &= w_1 w_2^2 + w_1 w_2 w_1, \\ w_2^4 &= 0, & w_1 w_2 w_1 w_2 &= w_2 w_1 w_2 w_1, \\ \gamma^2 &= \gamma, & w_i \gamma &= \gamma w_i + w_i, \\ w_1 x_1 &= x_1 w_1, & w_1 x_2 &= x_2 w_1 + 1 + g, \\ w_1 g &= g w_1, & w_2 x_1 &= x_1 (w_1 + w_2) + 1 + g, \\ w_2 g &= g (w_1 + w_2), & \gamma x_i &= x_i \gamma + x_i, \\ w_2 x_2 &= x_2 w + g \gamma, & \end{aligned}$$

Drinfed double of H

The Drinfeld double of H is $D(H) = H \otimes H^{* \operatorname{op}}$ as coalgebra. As algebra, D(H) is generated by $x_1, x_2, g, w_1, w_2, \gamma$ with relations (1),(2),(3) and

$$\begin{split} w_1^2 &= 0, & w_2^2 w_1 = w_1 w_2^2 + w_1 w_2 w_1, \\ w_2^4 &= 0, & w_1 w_2 w_1 w_2 = w_2 w_1 w_2 w_1, \\ \gamma^2 &= \gamma, & w_i \gamma = \gamma w_i + w_i, \\ w_1 x_1 &= x_1 w_1, & w_1 x_2 = x_2 w_1 + 1 + g, \\ w_1 g &= g w_1, & w_2 x_1 = x_1 (w_1 + w_2) + 1 + g, \\ w_2 g &= g (w_1 + w_2), & \gamma x_i = x_i \gamma + x_i, \\ w_2 x_2 &= x_2 w + g \gamma, \end{split}$$

We have dim $D(H) = 2^{10}$.

Fix the following elements in D(H):

$$x_{21} = x_1 x_2 + x_2 x_1,$$
 $w_{21} = w_1 w_2 + w_2 w_1.$

Fix the following elements in D(H):

$$x_{21} = x_1 x_2 + x_2 x_1,$$
 $w_{21} = w_1 w_2 + w_2 w_1.$

Central Hopf subalgebra

The subalgebra T of D(H) generated by x_1 , x_{21} , w_1 , w_{21} and g is a normal local commutative Hopf subalgebra with defining relations

$$x_1^2 = 0,$$
 $x_{21}^2 = 0,$ $w_1^2 = 0,$ $w_{21}^2 = 0,$ $g^2 = 1.$

Also dim $T = 2^5$.

Fix the following elements in D(H):

$$x_{21} = x_1 x_2 + x_2 x_1,$$
 $w_{21} = w_1 w_2 + w_2 w_1.$

Central Hopf subalgebra

The subalgebra **T** of D(H) generated by x_1 , x_{21} , w_1 , w_{21} and g is a normal local commutative Hopf subalgebra with defining relations

$$x_1^2 = 0,$$
 $x_{21}^2 = 0,$ $w_1^2 = 0,$ $w_{21}^2 = 0,$ $g^2 = 1.$

Also dim $T = 2^5$.

Hence

$$\mathbf{T} \stackrel{\iota}{\hookrightarrow} D(H) \stackrel{\pi}{\twoheadrightarrow} D(H)/D(H)\mathbf{T}^+$$

is an exact sequence of Hopf algebras.

We fix the following elements of $D(H)/D(H)T^+$:

$$a=\overline{x}_2, \hspace{1cm} b=\overline{w}_2, \hspace{1cm} c=\overline{\gamma}.$$

We fix the following elements of $D(H)/D(H)T^+$:

$$a = \overline{x}_2, \qquad \qquad b = \overline{w}_2, \qquad \qquad c = \overline{\gamma}.$$

Hopf algebra quotient

The algebra $D(H)/D(H)T^+$ is generated by a, b, c and satisfies the relations

$$ab + ba = c,$$
 $ac + ca = a,$ $bc + cb = b,$
 $a^4 = b^4 = 0,$ $c^2 + c = 0.$

We fix the following elements of $D(H)/D(H)T^+$:

$$a = \overline{x}_2, \qquad \qquad b = \overline{w}_2, \qquad \qquad c = \overline{\gamma}.$$

Hopf algebra quotient

The algebra $D(H)/D(H)T^+$ is generated by a, b, c and satisfies the relations

$$ab + ba = c,$$
 $ac + ca = a,$ $bc + cb = b,$
 $a^4 = b^4 = 0,$ $c^2 + c = 0.$

The Hopf algebra $D(H)/D(H)T^+$ is a well-known algebra in modular Lie theory.

$$[e, f] = h,$$
 $[e, h] = e,$ $[f, h] = f.$

$$[e, f] = h,$$
 $[e, h] = e,$ $[f, h] = f.$

The Lie algebra $\mathfrak s$ is not restricted. The minimal 2-envelope of $\mathfrak s$ is a 5-dimensional Lie algebra $\mathfrak m$.

$$[e, f] = h,$$
 $[e, h] = e,$ $[f, h] = f.$

The Lie algebra $\mathfrak s$ is not restricted. The minimal 2-envelope of $\mathfrak s$ is a 5-dimensional Lie algebra $\mathfrak m$.

The algebra $\mathfrak{u}(\mathfrak{m})$

The restricted enveloping algebra $\mathfrak{u}(\mathfrak{m})$ of \mathfrak{m} is isomorphic to $D(H)/D(H)\mathsf{T}^+$ via

$$e \mapsto a$$
, $f \mapsto b$, $h \mapsto c$.

and we have an exact sequence of Hopf algebras

$$\mathsf{T} \stackrel{\iota}{\hookrightarrow} D(H) \stackrel{\pi}{\twoheadrightarrow} \mathfrak{u}(\mathfrak{m})$$

$$[e, f] = h,$$
 $[e, h] = e,$ $[f, h] = f.$

The Lie algebra $\mathfrak s$ is not restricted. The minimal 2-envelope of $\mathfrak s$ is a 5-dimensional Lie algebra $\mathfrak m$.

The algebra $\mathfrak{u}(\mathfrak{m})$

The restricted enveloping algebra $\mathfrak{u}(\mathfrak{m})$ of \mathfrak{m} is isomorphic to $D(H)/D(H)\mathsf{T}^+$ via

$$e \mapsto a$$
, $f \mapsto b$, $h \mapsto c$.

and we have an exact sequence of Hopf algebras

$$\mathsf{T} \stackrel{\iota}{\hookrightarrow} D(H) \stackrel{\pi}{\twoheadrightarrow} \mathfrak{u}(\mathfrak{m})$$

For this reason we are interested in the representations of $\mathfrak{u}(\mathfrak{m})$.

Let V_0 , respectively V_1 , denote the one-dimensional $\mathfrak{u}(\mathfrak{m})$ -module, respectively the three dimensional $\mathfrak{u}(\mathfrak{m})$ -module \mathfrak{s} with the adjoint representation ad.

Let V_0 , respectively V_1 , denote the one-dimensional $\mathfrak{u}(\mathfrak{m})$ -module, respectively the three dimensional $\mathfrak{u}(\mathfrak{m})$ -module $\mathfrak s$ with the adjoint representation ad.

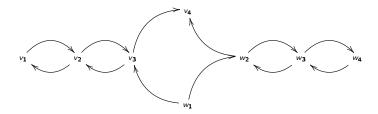
Thus V_1 in the basis $\{v_1, v_2, v_3\} := \{b, c, a\}$ of $\mathfrak s$ is given by ad $a = \mathbb A$, ad $b = \mathbb B$, ad $c = \mathbb C$, where

$$\mathtt{A} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad \mathtt{B} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad \mathtt{C} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Theorem.

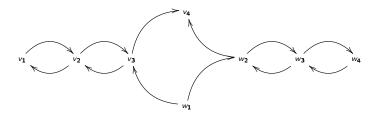
The simple modules of $\mathfrak{u}(\mathfrak{m})$ are V_0 and V_1 .

Consider the following 8-dimensional $\mathfrak{u}(\mathfrak{m})$ -module M



where the arrows oriented from left to right indicate the action of a while the arrows from right to left are the action of b.

Consider the following 8-dimensional $\mathfrak{u}(\mathfrak{m})$ -module M

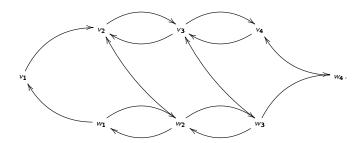


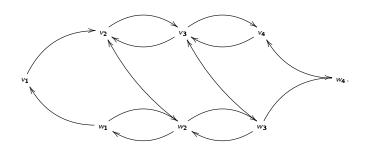
where the arrows oriented from left to right indicate the action of a while the arrows from right to left are the action of b.

Theorem.

- \rightarrow The projective cover of the simple module V_0 is $P(V_0) = M$.
- $P(V_0) \simeq \mathfrak{u}(\mathfrak{m})e_0$, where $e_0 = (1 + ab + a^2b^2)(1 + c)$ is a primitive idempotent of $\mathfrak{u}(\mathfrak{m})$.

Consider the following 8-dimensional $\mathfrak{u}(\mathfrak{m})$ -module N





- \rightarrow The projective cover of the simple module V_1 is $P(V_1) = N$.
- $P(V_1) \simeq \mathfrak{u}(\mathfrak{m})e_1$, where $e_1 = (1 + a^2b^2)c$ is a primitive idempotent of $\mathfrak{u}(\mathfrak{m})$.

 $\mathfrak{u}(\mathfrak{m})$ is tame type representation $\circ \circ \circ \bullet \circ$

Let $e=e_0+e_1$ where e_0 and e_1 are the primitive idempotents in $\mathfrak{u}(\mathfrak{m})$ generating the projective covers $P(V_0)$ and $P(V_1)$. Then the basic algebra associated to $\mathfrak{u}(\mathfrak{m})$ is

$$\mathfrak{u}(\mathfrak{m})^b=e\mathfrak{u}(\mathfrak{m})e.$$

Let $e=e_0+e_1$ where e_0 and e_1 are the primitive idempotents in $\mathfrak{u}(\mathfrak{m})$ generating the projective covers $P(V_0)$ and $P(V_1)$. Then the basic algebra associated to $\mathfrak{u}(\mathfrak{m})$ is

$$\mathfrak{u}(\mathfrak{m})^{b} = e\mathfrak{u}(\mathfrak{m})e.$$

The basic algebra $\mathfrak{u}(\mathfrak{m})^b$ has a basis

$$\{e_0,e_1,ae_0,a^3e_1,b^3e_0,be_1,a^3b^3e_0,abe_1\}.$$

Let $e=e_0+e_1$ where e_0 and e_1 are the primitive idempotents in $\mathfrak{u}(\mathfrak{m})$ generating the projective covers $P(V_0)$ and $P(V_1)$. Then the basic algebra associated to $\mathfrak{u}(\mathfrak{m})$ is

$$\mathfrak{u}(\mathfrak{m})^{b} = e\mathfrak{u}(\mathfrak{m})e.$$

The basic algebra $\mathfrak{u}(\mathfrak{m})^{b}$ has a basis

$${e_0, e_1, ae_0, a^3e_1, b^3e_0, be_1, a^3b^3e_0, abe_1}.$$

The ordinary quiver of $\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}$, denoted by $Q:=Q_{\mathfrak{u}(\mathfrak{m})^{\mathfrak{b}}}$, is

$$1 \underbrace{\begin{array}{c} \alpha_1 \\ \alpha_2 \\ \beta_1 \\ \beta_2 \end{array}} 2$$

We have that $\mathfrak{u}(\mathfrak{m})^{\mathtt{b}} \simeq \Bbbk Q/I$, where

$$I = \langle \alpha_1 \beta_1, \alpha_2 \beta_2, \beta_1 \alpha_1, \beta_2 \alpha_2, \alpha_1 \beta_2 + \alpha_2 \beta_1, \beta_1 \alpha_2 + \beta_2 \alpha_1 \rangle$$

is the kernel of the algebra epimorphism $\varphi: \Bbbk Q \to \mathfrak{u}(\mathfrak{m})^{\mathsf{b}}$ defined by

$$arphi(lpha_1)=a^3e_1,\quad arphi(lpha_2)=be_1,\quad arphi(eta_1)=ae_0,\quad arphi(eta_2)=b^3e_0,$$
 and $arphi(arepsilon_i)=e_i.$

We have that $\mathfrak{u}(\mathfrak{m})^{\mathtt{b}} \simeq \Bbbk Q/I$, where

$$I = \langle \alpha_1 \beta_1, \alpha_2 \beta_2, \beta_1 \alpha_1, \beta_2 \alpha_2, \alpha_1 \beta_2 + \alpha_2 \beta_1, \beta_1 \alpha_2 + \beta_2 \alpha_1 \rangle$$

is the kernel of the algebra epimorphism $\varphi: \Bbbk Q \to \mathfrak{u}(\mathfrak{m})^{\mathsf{b}}$ defined by

$$\varphi(\alpha_1) = a^3 e_1, \quad \varphi(\alpha_2) = b e_1, \quad \varphi(\beta_1) = a e_0, \quad \varphi(\beta_2) = b^3 e_0,$$

and
$$\varphi(\varepsilon_i) = e_i$$
.

Corollary

 $\mathfrak{u}(\mathfrak{m})^b$ is a special biserial algebra. Particularly, $\mathfrak{u}(\mathfrak{m})^b$ is tame representation type.

We have that $\mathfrak{u}(\mathfrak{m})^{\mathrm{b}} \simeq \Bbbk Q/I$, where

$$I = \langle \alpha_1 \beta_1, \alpha_2 \beta_2, \beta_1 \alpha_1, \beta_2 \alpha_2, \alpha_1 \beta_2 + \alpha_2 \beta_1, \beta_1 \alpha_2 + \beta_2 \alpha_1 \rangle$$

is the kernel of the algebra epimorphism $\varphi: \Bbbk Q \to \mathfrak{u}(\mathfrak{m})^{\mathsf{b}}$ defined by

$$\varphi(\alpha_1) = a^3 e_1, \quad \varphi(\alpha_2) = b e_1, \quad \varphi(\beta_1) = a e_0, \quad \varphi(\beta_2) = b^3 e_0,$$

and
$$\varphi(\varepsilon_i) = e_i$$
.

Corollary

 $\mathfrak{u}(\mathfrak{m})^b$ is a special biserial algebra. Particularly, $\mathfrak{u}(\mathfrak{m})^b$ is tame representation type.

Corollary

Since $\mathfrak{u}(\mathfrak{m})$ is Morita equivalent to $\mathfrak{u}(\mathfrak{m})^b$ it follows that $\mathfrak{u}(\mathfrak{m})$ is tame representation type.

- The classification of all indecomposable modules of a special biserial algebra was given in [4, Proposition 2.3].
- → They are either string modules or band modules.

- → They are either string modules or band modules.
- Determining strings and bands in kQ/I is a combinatorial problem.

- The classification of all indecomposable modules of a special biserial algebra was given in [4, Proposition 2.3].
- They are either string modules or band modules.
- Determining strings and bands in kQ/I is a combinatorial problem.

In our case, for instance, consider words in the vocabulary $\{\alpha_i^{\pm 1},\beta_i^{\pm 1}:i=1,2\}.$

- The classification of all indecomposable modules of a special biserial algebra was given in [4, Proposition 2.3].
- They are either string modules or band modules.
- Determining strings and bands in kQ/I is a combinatorial problem.

In our case, for instance, consider words in the vocabulary $\{\alpha_i^{\pm 1}, \beta_i^{\pm 1}: i=1,2\}.$

The words $a=\alpha_1\alpha_1^{-1}\alpha_2$ and $b=\alpha_1\beta_2$ are not string. In fact, a is not a string because $\alpha_1\alpha_1^{-1}$ is a "piece" of a and b is not a string because $\alpha_1\beta_2$ is a monomial of the binomial relation $\alpha_1\beta_2+\alpha_2\beta_1$.

- The classification of all indecomposable modules of a special biserial algebra was given in [4, Proposition 2.3].
- They are either string modules or band modules.
- Determining strings and bands in kQ/I is a combinatorial problem.

In our case, for instance, consider words in the vocabulary $\{\alpha_i^{\pm 1}, \beta_i^{\pm 1}: i=1,2\}.$

The words $a=\alpha_1\alpha_1^{-1}\alpha_2$ and $b=\alpha_1\beta_2$ are not string. In fact, a is not a string because $\alpha_1\alpha_1^{-1}$ is a "piece" of a and b is not a string because $\alpha_1\beta_2$ is a monomial of the binomial relation $\alpha_1\beta_2+\alpha_2\beta_1$.

The words $s = \alpha_1 \alpha_2^{-1} \alpha_1$ and $t = \beta_1^{-1} \beta_2$ are examples of strings.

String

Consider the words $s_1 = \alpha_1 \alpha_2^{-1}$, $s_2 = \alpha_1^{-1} \alpha_2$, $s_3 = \beta_1 \beta_2^{-1}$ and $s_4 = \beta_1^{-1} \beta_2$ and r an integer. The families of string in Q are the following:

$$w_1(r) = s_1^r, \qquad w_2(r) = s_2^r, \qquad r \ge 1, \\ w_3(r) = s_3^r, \qquad w_4(r) = s_4^r, \qquad r \ge 1, \\ w_5(r) = s_1^r \alpha_1, \qquad w_6(r) = (s_1^{-1})^r \alpha_2, \qquad r \ge 0 \\ w_7(r) = s_3^r \beta_1, \qquad w_8(r) = (s_3^{-1})^r \beta_2, \qquad r \ge 0.$$

String

Consider the words $s_1 = \alpha_1 \alpha_2^{-1}$, $s_2 = \alpha_1^{-1} \alpha_2$, $s_3 = \beta_1 \beta_2^{-1}$ and $s_4 = \beta_1^{-1} \beta_2$ and r an integer. The families of string in Q are the following:

$$w_1(r) = s_1^r, \qquad w_2(r) = s_2^r, \qquad r \ge 1, \ w_3(r) = s_3^r, \qquad w_4(r) = s_4^r, \qquad r \ge 1, \ w_5(r) = s_1^r \alpha_1, \qquad w_6(r) = (s_1^{-1})^r \alpha_2, \qquad r \ge 0 \ w_7(r) = s_3^r \beta_1, \qquad w_8(r) = (s_3^{-1})^r \beta_2, \qquad r \ge 0.$$

Similarly, we have the notion of band. For our case, there are 2 families of band in Q.

In order to illustrate how to associate an indecomposable module to a string, we consider the string $w_1(1) = s_1 = \alpha_1 \alpha_2^{-1}$:

$$1 \xrightarrow{\alpha_1} 2 \stackrel{\alpha_2}{\longleftarrow} 1$$

In order to illustrate how to associate an indecomposable module to a string, we consider the string $w_1(1) = s_1 = \alpha_1 \alpha_2^{-1}$:

$$1 \xrightarrow{\alpha_1} 2 \xleftarrow{\alpha_2} 1$$

The right kQ/I-module $U(w_1(1)) := k\{w_1, w_2, w_3\}$ (a vector for each vertex) is given by:

$$u_1 \cdot \epsilon_1 = u_1,$$
 $u_1 \cdot \epsilon_2 = 0,$ $u_1 \cdot \alpha_1 = u_2,$ $u_1 \cdot \alpha_2 = 0,$
 $u_2 \cdot \epsilon_1 = 0,$ $u_2 \cdot \epsilon_2 = u_2,$ $u_2 \cdot \alpha_1 = 0,$ $u_2 \cdot \alpha_2 = 0,$
 $u_3 \cdot \epsilon_1 = u_3,$ $u_3 \cdot \epsilon_2 = 0,$ $u_3 \cdot \alpha_1 = 0,$ $u_3 \cdot \alpha_2 = u_2,$

The algebra isomorphism $\mathfrak{u}(\mathfrak{m})^b\simeq \Bbbk Q/I$ and an anti-isomorphism of Hopf algebras $\mathfrak{u}(\mathfrak{m})^b\to \mathfrak{u}(\mathfrak{m})^b$ induce on $U(w_1(1))$ a left $\mathfrak{u}(\mathfrak{m})^b$ -module structure via

The algebra isomorphism $\mathfrak{u}(\mathfrak{m})^b\simeq \Bbbk Q/I$ and an anti-isomorphism of Hopf algebras $\mathfrak{u}(\mathfrak{m})^b\to \mathfrak{u}(\mathfrak{m})^b$ induce on $U(w_1(1))$ a left $\mathfrak{u}(\mathfrak{m})^b$ -module structure via

$$e_1 \cdot u_1 = u_1, \quad e_2 \cdot u_1 = 0, \quad ae_1 \cdot u_1 = u_2, \quad b^3 e_1 \cdot eu_1 = 0,$$

 $e_1 \cdot u_2 = 0, \quad e_2 \cdot u_2 = u_2, \quad ae_1 \cdot u_2 = 0, \quad b^3 e_1 \cdot u_2 = 0,$
 $e_1 \cdot u_3 = u_3, \quad e_2 \cdot u_3 = 0, \quad ae_1 \cdot u_3 = 0, \quad b^3 e_1 \cdot u_3 = u_2.$

The algebra isomorphism $\mathfrak{u}(\mathfrak{m})^b\simeq \Bbbk Q/I$ and an anti-isomorphism of Hopf algebras $\mathfrak{u}(\mathfrak{m})^b\to \mathfrak{u}(\mathfrak{m})^b$ induce on $U(w_1(1))$ a left $\mathfrak{u}(\mathfrak{m})^b$ -module structure via

$$\begin{split} e_1 \cdot u_1 &= u_1, & e_2 \cdot u_1 &= 0, & ae_1 \cdot u_1 &= u_2, & b^3 \, e_1 \cdot e u_1 &= 0, \\ e_1 \cdot u_2 &= 0, & e_2 \cdot u_2 &= u_2, & ae_1 \cdot u_2 &= 0, & b^3 \, e_1 \cdot u_2 &= 0, \\ e_1 \cdot u_3 &= u_3, & e_2 \cdot u_3 &= 0, & ae_1 \cdot u_3 &= 0, & b^3 \, e_1 \cdot u_3 &= u_2. \end{split}$$

The other elements of the basis of $\mathfrak{u}(\mathfrak{m})^b$ act trivially.

The functors

$$\begin{split} & \mathsf{Ind}_e :=_{\mathfrak{u}(\mathfrak{m})^b} \mathcal{M} \to_{\mathfrak{u}(\mathfrak{m})} \mathcal{M}, \qquad \mathsf{Ind}_e(N) = \mathfrak{u}(\mathfrak{m}) e \otimes_{\mathfrak{u}(\mathfrak{m})^b} N, \\ & \mathsf{Res}_e :=_{\mathfrak{u}(\mathfrak{m})} \mathcal{M} \to_{\mathfrak{u}(\mathfrak{m})^b} \mathcal{M}, \qquad \mathsf{Res}_e(M) = e M \end{split}$$

are inverse equivalences of categories.

The functors

$$\begin{split} & \mathsf{Ind}_e :=_{\mathfrak{u}(\mathfrak{m})^b} \mathcal{M} \to_{\mathfrak{u}(\mathfrak{m})} \mathcal{M}, \qquad \mathsf{Ind}_e(N) = \mathfrak{u}(\mathfrak{m}) e \otimes_{\mathfrak{u}(\mathfrak{m})^b} N, \\ & \mathsf{Res}_e :=_{\mathfrak{u}(\mathfrak{m})} \mathcal{M} \to_{\mathfrak{u}(\mathfrak{m})^b} \mathcal{M}, \qquad \mathsf{Res}_e(M) = e M \end{split}$$

are inverse equivalences of categories.

Thus $\operatorname{Ind}_e(U(w_1(1)))$ is the following 5-dimensional left $\mathfrak{u}(\mathfrak{m})$ -module

$$e_1 \otimes u_1 \quad e_2 \otimes u_2 \quad ae_2 \otimes u_2 \quad a^2 e_2 \otimes u_2 \quad e_1 \otimes u_3,$$

where the arrows oriented from left to right indicate the action of a while the arrows from right to left are the action of b.

Category of finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})$ -modules

The non-isomorphic finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})$ -modules are:

the 8 families of string modules,

Category of finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})$ -modules

The non-isomorphic finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})$ -modules are:

- the 8 families of string modules,
- the 2 families of band modules,

Category of finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})$ -modules

The non-isomorphic finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})$ -modules are:

- the 8 families of string modules,
- the 2 families of band modules,
- the 2 simple modules and its respective projective covers.

Category of finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})$ -modules

The non-isomorphic finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})$ -modules are:

- → the 8 families of string modules,
- → the 2 families of band modules,
- → the 2 simple modules and its respective projective covers.

Next step

Determine the fusion rules. Precisely, for all finite-dimensional indecomposable left $\mathfrak{u}(\mathfrak{m})$ -modules U and V, calculate the decomposition of $U \otimes_{\mathbb{k}} V$ in direct sum of indecomposable modules.

References

References

- [1] N. Andruskiewitsch, I. Angiono and I. Heckenberger. *On finite GK-dimensional Nichols algebras over abelian groups.* Mem. Amer. Math. Soc. **271**, No. 1329 (2021).
- [2] I. Assem, D. Simson, A. Skowroński. Elements of the Representation Theory of Associative Algebras. Lond. Math. Soc. Stud. Texts 65, Cambridge Univ. Press (2006).
- [3] C. Cibils, A. Lauve, S. Witherspoon. *Hopf quivers and Nichols algebras in positive characteristic*. Proc. Amer. Math. Soc. **137** (12), 4029–4041 (2009).
- [4] B. Wald and J. Waschbüsch *Tame biserial algebras*. J. Algebra **95**, 480-500 (1985).

Thank you!