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Rooted trees

• Let X be a finite alphabet with |X| ≥ 2.

• The Cayley graph TX of the free monoid X∗ is a regular
rooted tree.
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• The boundary ∂TX is homeomorphic to Xω.

• So Aut(TX) acts on Xω.
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Automorphisms

• If g ∈ Aut(TX), then g fixes the root.

• g permutes the subtrees Tx with vertex sets xX∗, x ∈ X.

• If g(Tx) = Ty, then after identifying Tx, Ty with TX , we
have that the action is given by g|x ∈ Aut(TX).

• Algebraically, g(xw) = g(x)g|x(w) for x ∈ X and
w ∈ X∗.

• g|x is called the section of g at x.

• One can define sections g|u at any word u ∈ X∗ so that
g(uw) = g(u)g|u(w) for all w ∈ X∗.

• Note that g|x1···xn = ((g|x1)|x2 · · · )|xn .
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Self-similar groups

• G ≤ Aut(TX) is self-similar if it is closed under sections.

• Of course, Aut(TX) is self-similar.

• Famous examples of self-similar groups include the
Grigorchuk 2-group and the Gupta-Sidki p-groups.

• Grigorchuk and Żuk used a self-similar representation of
the lamplighter group to disprove the strong form of
Atiyah’s conjecture on ℓ2-Betti numbers.

• Bartholdi and Nekrashevych used self-similar groups called
iterated monodromy groups to solve Hubbard’s twisted
rabbit problem in complex dynamics.

• Any self-similar subgroup of Aut(TX) acts on Xω.
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Automata

• An automaton A is a finite subset of Aut(TX) closed
under sections.

• Automata are given by state diagrams.

• The vertices (states) are the elements of A.

• There are labelled edges a
x|a(x)−−−−→ a|x.

• The subgroup ⟨A⟩ generated by an automaton is always
self-similar.

• Such groups are called automaton groups and were
studied before the general notion.

• Automaton groups always have decidable word problem.
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Adding machine

a b

1 | 0
0 | 1

0 | 0, 1 | 1

• a|0 = b, a|1 = a, a(0) = 1, a(1) = 0.

• b|0 = b = b|1, b(x) = x.

• a(1101) = 0011.

• b = Id.

• ⟨a, b⟩ ∼= Z.
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The Grigorchuk group

a b

c

de

0 | 11 | 0

0 | 0

1 | 1
0 | 0

1 | 1

0 | 0

1 | 1

0 | 0

1 | 1

• This automaton generates the Grigorchuk group.

• It is a finitely generated, just infinite 2-group of
intermediate growth.

• It was the first amenable but not elementarily amenable
group found.



Self-similar groups Nekrashevych algebras Techniques

The Grigorchuk group

a b

c

de

0 | 11 | 0

0 | 0

1 | 1
0 | 0

1 | 1

0 | 0

1 | 1

0 | 0

1 | 1

• This automaton generates the Grigorchuk group.

• It is a finitely generated, just infinite 2-group of
intermediate growth.

• It was the first amenable but not elementarily amenable
group found.



Self-similar groups Nekrashevych algebras Techniques

The Grigorchuk group

a b

c

de

0 | 11 | 0

0 | 0

1 | 1
0 | 0

1 | 1

0 | 0

1 | 1

0 | 0

1 | 1

• This automaton generates the Grigorchuk group.

• It is a finitely generated, just infinite 2-group of
intermediate growth.

• It was the first amenable but not elementarily amenable
group found.



Self-similar groups Nekrashevych algebras Techniques

The Grigorchuk group

a b

c

de

0 | 11 | 0

0 | 0

1 | 1
0 | 0

1 | 1

0 | 0

1 | 1

0 | 0

1 | 1

• This automaton generates the Grigorchuk group.

• It is a finitely generated, just infinite 2-group of
intermediate growth.

• It was the first amenable but not elementarily amenable
group found.



Self-similar groups Nekrashevych algebras Techniques

Contracting groups

• The early work of Grigorchuk, and later Gupta-Sidki,
exploited that their groups were contracting.

• Roughly, an automaton group G is contracting if there is
a constant 0 ≤ λ < 1 such that ℓ(g|x) < λ · ℓ(g) for all g
with ℓ(g) large enough and x ∈ X.

• Sections of g along sufficiently long words will then have
small word length, allowing induction.

• Nekrashevych formalized the notion in a way that makes
sense for any self-similar group.
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The nucleus

• A self-similar group G ≤ Aut(TX) is contracting if there
is a finite automaton N ⊆ G such that, for all g ∈ G,
there is k ≥ 0 with g|Xk ⊆ N .

• The smallest such N is called the nucleus of G.

• There are algorithms deciding if an automaton is a
nucleus and computing the nucleus of a contracting
automaton group.

• In the classical approach the nucleus is a subset of those
elements whose sections do not contract by the factor λ.

• Contracting groups include the Grigorchuk group,
Gupta-Sidki groups, GGS-groups, Šunić groups associated
to polynomials, automaton spinal groups, the basilica
group and the Hanoi towers group on 3-pegs.
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Algebras

• Nekrashevych introduced C∗-algebras associated to
self-similar groups generalizing Cuntz C∗-algebras.

• He later considered analogues with coefficients in a field.

• The C∗-algebra is a completion of the complex
Nekrashevych algebra.

• The algebraic version generalizes Leavitt algebras.

• They have also been studied by Clark, Exel, Pardo, Sims,
Starling, the authors and others.
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Leavitt algebras

• To each x ∈ X, we have an operator KXω → KXω

given by x · w = xw (push x) for w ∈ Xω.

• We also have an “adjoint” operator x∗ (pop x) given by

x∗ · yw =

{
w, if y = x;

0, else.

• The operators satisfy the relations:
1. y∗x = δx,y, for x, y ∈ X;
2.

∑
x∈X xx∗ = 1.

• ∑
x∈X xx∗ pops the first letter of w and pushes it back on.

• The algebra defined by these relations LK,X is called the
Leavitt algebra.

• It is a finitely presented simple K-algebra acting faithfully
on KXω.
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Nekrashevych algebras

• If G ≤ Aut(TX) is self-similar, it acts on KXω.

• It is natural to look at the algebra generated by G and
LK,X .

• In addition to the Leavitt relations and the multiplication
table of G, we have additional relations reflecting the
self-similarity:
1. gx = g(x)g|x for g ∈ G, x ∈ X;
2. x∗g = g|g−1(x)(g

−1(x))∗ for g ∈ G, x ∈ X.

• The Nekrashevych algebra NK(G,X) of G is the
K-algebra generated by G and the x, x∗ with x ∈ X
subject to the Leavitt algebra relations and the above
relations.
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The simple quotient

Theorem (BS, Szakács)

The K-algebra generated by LK,X and G acting on KXω is
the unique simple quotient of the Nekrashevych algebra of G.

• So simplicity of NK(G,X) is equivalent to faithfulness of
the natural representation on infinite words.

• Simplicity of NC(G,X) is necessary for simplicity of the
C∗-algebra.

• Nekrashevych C∗-algebras are etale groupoid C∗-algebras.

• Nekrashevych algebras are etale groupoid algebras of the
same groupoid (also called “Steinberg algebras”).

• The groupoid of a self-similar group satisfies the
conditions for simplicity of Hausdorff groupoid algebras.

• But these groupoids are rarely Hausdorff, so they are good
test cases for understanding simplicity phenomena.
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Previous results
• Nekrashevych showed (2015) the Nekrashevych algebra of
the Grigorchuk group is not simple in characteristic 2.

• The Grigorchuk group G acts over X = {0, 1}.
• G contains a Klein 4 subgroup b, c, d, e fixing 111 · · · and
on any other infinite word exactly two elements agree.

• So b+ c+ d+ e annihilates all infinite words in
characteristic 2.

• Clark, Exel, Pardo, Sims and Starling (2018) proved the
Nekrashevych algebra of the Grigorchuk group is simple
over fields of characteristic different than 2.

• They also showed the Nekrashevych C∗-algebra of the
Grigorchuk group is simple.

• Nekrashevych (unpublished) showed the Nekrashevych
algebra of the Grigorchuk-Erschler group is simple over no
field.
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Nekrashevych algebras of contracting groups

• Nekrashevych showed that C∗-algebras of contracting
groups are finitely presented.

• The same holds for Nekrashevych algebras over fields.

• The algebra is generated by x, x∗ with x ∈ X and the
nucleus N .

• The relations are those of the Leavitt algebra and those of
the Nekrashevych algebra involving nucleus elements.

• Since N is finite, this is a finite presentation.

• The algebra depends only on N and not G.
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Simplicity of Nekrashevych algebras of contracting groups

Theorem (BS, Szakács)

Let G be a contracting group over the alphabet X.

1. Either NK(G,X) is simple for no field K, or it is simple
for fields of all but finitely many positive characteristics.

2. There is an algorithm which on input the nucleus of G,
outputs the set of characteristics of fields K for which
NK(G,X) is not simple.

• There is a theoretical description of simplicity that
underlies the algorithmic result.

• This theoretical description is applicable to many infinite
families of contracting groups.

• For any finite set P of primes, we construct a contracting
group G with NK(G,X) simple over precisely fields K of
characteristic not in P .
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• There is a theoretical description of simplicity that
underlies the algorithmic result.

• This theoretical description is applicable to many infinite
families of contracting groups.

• For any finite set P of primes, we construct a contracting
group G with NK(G,X) simple over precisely fields K of
characteristic not in P .
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Šunić groups

• Let p be a prime and f ∈ Zp[x] of degree n > 0 with
f(0) ̸= 0.

• Let Mf be the companion matrix of f .

• Let Gp,f be the self-similar group with alphabet Zp

generated by the cyclic permutation σ of the trees
T0, . . . , Tp−1 and a copy of Zn

p with acting as follows.

• Zn
p fixes the first letter of each word and v|0 = Mfv,

v|p−1 = σvn and v|j = Id, else, for v = (v1, . . . , vn) ∈ Zn
p .

• Gp,f is contracting with nucleus Zn
p ∪ ⟨σ⟩.

• The Grigorchuk group is G2,1+x+x2 , the
Grigorchuk-Erschler group is G2,x2+1 and the
Fabrykowski-Gupta group is G3,x−1.

• Šunić gave necessary and sufficient conditions for Gp,f to
be a p-group of intermediate growth.
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Šunić groups: continued

Theorem (BS, Szakács)

Let Gp,f be a Šunić group with deg f = n.

1. If n = 1, the Nekrashevych algebra of Gp,f is simple over
all fields.

2. If n > 1 and Mf acts transitively on projective space
P(Zn

p ), then the Nekrashevych algebra of Gp,f is simple
over all fields except those of characteristic p.

3. If n > 1 and Mf does not act transitively on P(Zn
p ), then

the Nekrashevych algebra of Gp,f is never simple.

• If n > 1 and Mf acts transitively on P(Zn
p ), then Gp,f is a

p-group of intermediate growth.

• The Grigorchuk-Erschler group G2,x2+1 has a non-simple
algebra because the companion matrix fixes (1, 1).
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Šunić groups: continued

Theorem (BS, Szakács)
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Some further examples

• We showed Gupta-Sidki p-groups and more general
GGS-groups over prime-power-sized alphabets have simple
Nekrashevych algebras over all fields.

• GGS-groups over other size alphabets have algebras
simple over all fields or none and we characterize which
case occurs.

• We also gave characterizations of simplicity for
self-replicating spinal automaton groups and multi-edge
spinal groups.
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The monoid algebra

• Let G ≤ Aut(TX) be self-similar.

• NK(G,X) is generated by G and the x, x∗ with x ∈ X.

• Put (x1 · · · xn)
∗ = x∗

n · · ·x∗
1.

• The defining relations for NK(G,K) are:
1. The multiplication table of G;
2. gx = g(x)g|x for g ∈ G, x ∈ X;
3. x∗g = g|g−1(x)(g

−1(x))∗ for g ∈ G, x ∈ X;
4. y∗x = δx,y, for x, y ∈ X;
5.

∑
x∈X xx∗ = 1.

• All of these except the last use just multiplication.

• So 1–4 define a (contracted) monoid algebra KM(G,X).

• NK(G,X) = KM(G,X)/(1−
∑

x∈X xx∗).

• M(G,X) consists of 0 and all elements of the form ugv∗

with g ∈ G and u, v ∈ X∗. G is the unit group.
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n · · ·x∗
1.
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3. x∗g = g|g−1(x)(g

−1(x))∗ for g ∈ G, x ∈ X;
4. y∗x = δx,y, for x, y ∈ X;
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∑
x∈X xx∗ = 1.
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• So 1–4 define a (contracted) monoid algebra KM(G,X).

• NK(G,X) = KM(G,X)/(1−
∑

x∈X xx∗).

• M(G,X) consists of 0 and all elements of the form ugv∗

with g ∈ G and u, v ∈ X∗. G is the unit group.
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Inverse monoids

• A monoid M is inverse if, for all m ∈ M , there is a unique
m∗ ∈ M with mm∗m = m and m∗mm∗ = m∗.

• Groups are inverse monoids.

• Inverse monoids are to partial symmetry as groups are to
symmetry.

• M(G,X) is an inverse monoid.

• M(G,X) has no proper non-zero quotients (is
congruence-free).

• The ideal (1−
∑

x∈X xx∗) is a special case of Exel’s tight
ideal of an inverse monoid algebra.

Theorem (BS, Szakács)

The algebra of a congruence-free inverse monoid has a unique
maximal ideal containing Exel’s tight ideal, called the singular
ideal.
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The singular ideal

• For the case of KM(G,X), the singular ideal is exactly
the kernel of the action on KXω.

• We characterized the singular ideal and the ideal
(1−

∑
x∈X xx∗) as follows.

Theorem (BS, Szakács)

Let a ∈ KM(G,X).

1. a ∈ (1−
∑

x∈X xx∗) iff aXk = 0 for some k ≥ 0.

2. a is singular iff, for all u ∈ X∗, there is w ∈ X∗ with
auw = 0.

• Key reduction: NK(G,X) is not simple iff there is
a ∈ KG that is singular but not in (1−

∑
x∈X xx∗).

• If G is contracting, we may assume that a is supported on
the nucleus N , a finite set.
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Idea of the algorithm

• Let N be the nucleus, a finite automaton.

• The condition for a ∈ KN to be singular is given by a
finite Z-linear system of equations E.

• The condition for a to be in (1−
∑

x∈X xx∗) is given by a
larger finite Z-linear system of equations E ′.

• It is easy to check if there is a solution to E which is not
a solution to E ′.

• Just compare ranks of the coefficient matrices.

• The ranks are the same as over Q for all but finitely many
primes.
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The simplicity graph

• X∗ acts on equivalence relations ≡ on N .

• Put g (x· ≡) h if g(x) = h(x) and g|x ≡ h|x for x ∈ X,
g, h ∈ N .

• Define ≡w= (w ·=) for w ∈ X∗.

• One can show that g ≡w h iff gw = hw in M(G,X).

• Since N is finite, V = {≡w| w ∈ X∗} is finite and
X∗-invariant.

• Let Γ be the Schreier digraph of X∗ acting on V .

• One can effectively compute Γ.

• A vertex is essential if it can be reached from a cycle.

• A vertex is minimal if there is no exit from its strong
component.

• Minimal vertices are essential.
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Simplicity equations

• If ≡ is an equivalence relation on N , let E≡ be the
system of equations in variables {ag | g ∈ N}:{∑

g≡h

ag = 0 | h ∈ N

}

• Key point: a =
∑

g∈N agg ∈ KN satisfies E≡w iff
aw = 0.

Theorem (NS, Szakács)

Let a ∈ KN where N is the nucleus (or any automaton).

1. a ∈ (1−
∑

x∈X xx∗) iff it satisfies E≡ for each essential
vertex ≡.

2. a is singular iff it satisfies E≡ for each minimal vertex ≡.
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Final remarks

• The next case is to consider general automaton groups G.

• Many have simple Nekrashevych algebras because they
have Hausdorff groupoids.

• Nekrashevych characterized the Hausdorff condition.

• If the action of G on Xω is essentially free, the groupoid
is Hausdorff and the algebra is simple.

• This includes:
1. Standard lamplighter actions (Grigorchuk/Żuk, Silva/BS);
2. Solvable Baumslag-Solitar groups (Bartholdi/Šunić);
3. Bireversible automaton groups (BS/Vorobets/Vorobets).

• The obstruction to solving the general case is bounding
the max word length in the support of a singular element
of KG not belonging to (1−

∑
x∈X xx∗).
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2. Solvable Baumslag-Solitar groups (Bartholdi/Šunić);
3. Bireversible automaton groups (BS/Vorobets/Vorobets).

• The obstruction to solving the general case is bounding
the max word length in the support of a singular element
of KG not belonging to (1−
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The end

Thank you for your attention!
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