Injective modules over a Leavitt path algebra

Francesca Mantese University of Verona

February 10, 2022

Francesca Mantese University of Verona Injective modules over a Leavitt path algebra

The goal: To study the module category of a Leavitt path algebra. joint project with G.Abrams and A.Tonolo

G.Abrams, P.Ara, M.Sines Molina <u>Leavitt Path Algebras</u>, Lecture Notes in Mathematics, Springer/Verlag 2017

- Optimizion of a LPA and examples.
- **2** On the module category of a LPA: main results
- 3 The injectives modules over a LPA.

• • • • • • •

Let $E = (E^0, E^1, s, r)$ be a direct graph. The <u>extended graph of E</u> is the graph $\hat{E} = (E^0, E^1 \cup (E^1)^*, s', r')$, with $(E^1)^* = \{e^* \mid e \in E^1\}, r'_{|_{E^1}} = r, s'_{|_{E^1}} = s, r'(e^*) = s(e),$ $s'(e^*) = r(e).$

Example: Let *E* be the graph
$$c \bigoplus_{v} \stackrel{d}{\longrightarrow} \bullet^{w}$$

The extended graph \hat{E} is: $c \bigoplus_{v} \stackrel{d}{\longrightarrow} \bullet^{w}$

伺 と く ヨ と く ヨ と

3

The algebra $L_{\mathcal{K}}(E)$

<u>The Leavitt path algebra</u> $L_K(E)$ of E in the field K is the K-path algebra $K\hat{E}$ modulo the relations:

•
$$e^*e' = \delta_{e,e'}r(e)$$
 for any $e, e' \in E^1$
• $v = \sum_{\{e \in E^1 | s(e) = v\}} ee^*$ for any $v \in E^0$ such that
 $0 < |s^{-1}(v)| < \infty$.

Example: Let
$$E: c \bigoplus {}^{v} \xrightarrow{d} {}^{w}; \hat{E}: c \bigoplus {}^{v} \xrightarrow{d} {}^{w}$$

The Leavitt path algebra $L_{\mathcal{K}}(E)$ is the path algebra $\mathcal{K}\hat{E}$ modulo the relations:

$$c^*c = v, d^*d = w, d^*c = 0, c^*d = 0, cc^* + dd^* = v$$

Well-known examples

Strategies and techniques

- In general L_K(E) has some specified algebraic property ⇔ E has some specified graph-theoretic property (for instance: description in terms of the graph of those Leavitt path algebras which are prime, finite dimensional, noetherian, artinian...)
- We aim to describe the module category of L_K(E) in terms of the graph E.
- One can act with sequences of operations on the graphs preserving Morita equivalences between L_K(E) and L_K(F) in order to reduce from E to a simpler graph F. So we can study modules over L_K(F) instead of L_K(E).
- In the language of symbolic dynamics, they correspond to *flows of standard transformations*

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem: (Ara-Brustenga, 2010) The Leavitt path algebra $L_{\mathcal{K}}(E)$ is a *perfect left localization* of a path algebra.

Indeed, denoted by \overline{E} the opposite graph of E, the inclusion $P(\overline{E}) \hookrightarrow L_{\mathcal{K}}(E)$ is a ring epimorphism. It is the universal localization w.r.t a suitable set of maps between fin. gen. projective $P(\overline{E})$ -modules. And $L_{\mathcal{K}}(E)$ is flat as $P(\overline{E})$ -module.

Corollary: The category of finitely presented $L_{\mathcal{K}}(E)$ -modules is equivalent to a quotient category of the finitely presented $P(\overline{E})$ -modules (w.r.t a suitable Serre subcategory).

- $L_{\mathcal{K}}(E)$ is unital if and only if $|E^0|$ is finite. In this case, $1_{L_{\mathcal{K}}(E)} = \sum_{v \in E^0} v$. From now on assume E finite and K algebraically closed.
- The algebra $L_{\mathcal{K}}(E)$ is hereditary.
- Any Leavitt path algebra is a Bézout ring, i.e. every finitely generated one-sided (left and right) ideal of $L_{\mathcal{K}}(E)$ is principal.

伺下 イヨト イヨト

Let *E* be a finite graph and $L_{\mathcal{K}}(E)$ the associated LPA.

- **Projective modules**: By the Bézout property, they are direct sums of cyclic ideals.
- Simple modules : a complete classification does not exist. But for any closed path c in the graph and any $0 \neq k \in K$, there are finitely presented simple modules with relevant properties. They are the <u>Chen simple modules</u> associated to the closed path c.
- **Injective modules**: unknown. We construct a family of injective modules as the injective envelopes of Chen simple modules. They are <u>Prüfer-type</u> modules, or *formal power series* modules.

伺 ト イ ヨ ト イ ヨ ト

Let
$$c \bigoplus \bullet^v \longrightarrow \bullet^w$$
.

- for k = 1, V_c^1 is the *K*-vector space generated by the *infinite* path $c^{\infty} = cccc \dots$ So $V_c^1 = \{\lambda c^{\infty} \mid \lambda \in K\}$
- V_c^1 has a structure of left $L_K(E)$ -module, it is simple, finitely presented and isomorphic to $L_K(E)/L_K(E)(c-1)$
- In general, V_c^k is simple, finitely presented and isomorphic to $L_K(E)/L_K(E)(c-k)$

Chen simple modules: examples

Let
$$f \bigoplus_{v \to w} e^{u} \xrightarrow{g \to v} e^{v} \xrightarrow{d} e^{w}$$

- V_f^1 is the K-vector space generated by the *infinite path* f^{∞} . It is a simple left $L_K(E)$ -module, isomorphic to $L_K(E)/L_K(E)(f-1)$.
- V_c^1 is the K-vector space generated by the *infinite paths* c^{∞} and $f^i g c^{\infty}$, for any $i \ge 0$. In this case dim_K $V_c^1 = \infty$.
- V_c^1 has a structure of left $L_K(E)$ -module, it is simple, finitely presented and isomorphic to $L_K(E)/L_K(E)(c-1)$.

何 ト イヨ ト イヨ ト

For any closed path c, the Chen simple module V_c^k comes from infinite paths ending in c^{∞} , and it is $L_K(E)/L_K(E)(c-k)$.

If w is a sink vertex, then $L_{\mathcal{K}}(E)w$ is a projective and simple module. It can be regarded as the Chen simple associated to the closed path w.

Theorem: [Ara-Rangaswamy] All the simple modules over $L_K(E)$ are finitely presented \Leftrightarrow all the simple modules are Chen simple modules associated to closed paths in $E \Leftrightarrow$ any vertex in E is the base of at most one cycle.

Fix a closed path c in E and the associated Chen simple module V_c^k . Then $\operatorname{Ext}^1(V_c^k, V_c^k) \neq 0$.

So, for any n > 0, we construct a uniserial module M_n of length n with all the composition factors isomorphic to V_c^k . It is $M_i \leq M_j$ for $i \leq j$. The direct limit of the M_n 's is called the *Prüfer* module U_c^k over $L_K(E)$

Proposition For any closed path $c \in E$ and for any $0 \neq k \in K$, there exists a *Prüfer module* U_c^k , which is indecomposable, uniserial and artinian. All its composition factors are isomorphic to V_c^k .

Problem: Is U_c^k an injective module?

For suitable c's, U_c^k is pure-injective. So it is injective if the Baer's criterion is tested on the finitely generated left ideals of $L_K(E)$.

Since the finitely generated left ideals of $L_{\mathcal{K}}(E)$ are principal, the Baer's criterion is equivalent to test the division of the elements of the Prüfer module U_c^k by the elements of $L_{\mathcal{K}}(E)$.

So, since any LPA is Bézout, the notion of divisibility plays a role for the injectivity, as in the commutative setting of a PID.

And we have a division algorithm for U_c^k

Theorem: Let *E* be a finite graph and let *c* be a closed path in *E*. Let U_c^k be the Prüfer module associated to *c*. Then U_c^k is injective if and only if *c* is a maximal cycle (i.e. no cycles in *E* connect to *c*).

In case U_c^k is injective, then :

- U_c^k is the injective envelope of the Chen simple module V_c^k ;
- End_{L_K(E)}(U^k_c) is isomorphic to the ring K[[x]] of formal power series in x.

- General results on uniserial modules
- A division algorithm to solve equations in U_c^k .
- Morita equivalences to reduce *E* to a simpler graph *F*, using graph reduction operations.

Consider the Jacobson Algebra R = K < X, Y | XY = 1 >. It is isomorphic to $L_{K}(\mathcal{T})$, where \mathcal{T} is the Toeplitz graph

A complete list of non-isomorphic simple left modules is given by

- the projective module $L_{\mathcal{K}}(\mathcal{T})w$ associated to the sink w
- the Chen simple modules V_c^k .

Since c is a maximal cycle, then the Prüfer module associated to any Chen simple modules is injective. So it is the injective envelope of the simple itself.

For the simple $L_{\mathcal{K}}(\mathcal{T})w$, we have that $\operatorname{Ext}^{1}(L_{\mathcal{K}}(\mathcal{T})w, L_{\mathcal{K}}(\mathcal{T})w) = 0$, so we cannot repeat the Prüfer construction.

The injective envelope of $L_{\mathcal{K}}(\mathcal{T})w$

New strategy: any element of $L_{\mathcal{K}}(\mathcal{T})w$ can be written uniquely as $k_{-1}w + \sum_{i=0}^{n} k_i c^i d$, with $k_i \in \mathcal{K}$. Intuitively, we build the injective envelope of $L_{\mathcal{K}}(\mathcal{T})w$ using "formal series" (as the injective envelope of $\mathcal{K}[x]$ is built using formal power series $\mathcal{K}[[x]]$).

Definition: Let *Y* denote the *K*-space whose elements are "formal series" of the form

$$Y:=\{k_{-1}w+k_0d+k_1cd+\cdots+k_ic^id+\cdots \mid k_i\in K\}.$$

- The K-space Y has a natural structure as a left L_K(T)-module
- $L_{\mathcal{K}}(\mathcal{T})w$ is the $L_{\mathcal{K}}(\mathcal{T})$ -submodule of Y consisting of those elements for which $k_i = 0$ for all i > N for some $N \in \mathbb{N}$, i.e., $L_{\mathcal{K}}(\mathcal{T})w$ consists of the "standard polynomials" in Y.

・ 同 ト ・ ヨ ト ・ ヨ ト

We use again the Bézout property of $L_{\mathcal{K}}(\mathcal{T})$ and a division algorithm to show that:

- $L_{\mathcal{K}}(\mathcal{T})w$ is essential in Y.
- Y is the injective, so in particular it is the injective envelope of L_K(T)w

Theorem: The $L_{\mathcal{K}}(\mathcal{T})$ -module $C = Y \oplus (\oplus U_c^k)$ is a minimal injective cogenerator for $L_{\mathcal{K}}(\mathcal{T})$.

A left $L_{\mathcal{K}}(\mathcal{T})$ -module M is injective if and only if M is isomorphic to a direct summand of a direct product of copies of C.

Problem: Is it possibile to generalize this approach to other LPAs?

伺下 イヨト イヨト

Theorem: [Ara-Rangaswamy] All the simple modules over $L_K(E)$ are finitely presented \Leftrightarrow all the simple modules are (twisted) Chen simple modules associated to simple closed paths in $E \Leftrightarrow$ any vertex in E is the base of at most one cycle.

Theorem: Let *c* be a simple closed path. The injective envelope of V_c^k is:

- The the Prüfer module U_c^k , if c is a maximal cycle.
- The "formal power series" module \hat{U}_c^k , if c is not maximal.

Some details: Any Prüfer module U_c^k is generated by a family $\{\alpha_i\}_{i\in\mathbb{N}}$, such that $(c - k)\alpha_i = \alpha_{i-1}$. \hat{U}_c^k is the left $L_{\mathcal{K}}(E)$ -module of the "formal power series" with terms $pc^n\alpha_i$, for p real path and $n \ge 0$. Consider $L_K(E)$ where E is $f \bigoplus \bullet^u \xrightarrow{g} \bullet^v \xrightarrow{d} \bullet^w$. The indecomposable injectives in $L_K(E)$ are:

- The injective envelopes of the simples V_f^k : the Prüfer modules U_f^c (*f* is a maximal cycle).
- The injective envelope of the simple L_K(E)w: the module of the "formal series" with terms f^mgcⁿdw, for m, n ≥ 0
- The injective envelopes of the simple V^k_c: the modules of "formal series" with terms f^mgcⁿα_i, for m, n, j ≥ 0