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Presentation

The school will focus on the interplay between dynamics and algebra, in-

troducing participants to key subjects in the study of these interactions:

Groupoid convolution algebras and tensor categories. The techniques

developed will be applied to Leavitt path algebras, which encode combi-

natorics and dynamics of graphs.

In recent years groupoids have become a central point in the study

of the interplay between dynamics and algebra. We will present an in-

troductory course on convolution algebras associated to groupoids. We

will o�er two courses in the subject of Leavitt path algebras, one intro-

ductory and one advanced. On another axis for the school, we focus on

tensor categories. We will present an introductory course in the theory

of representations of groups, which will motivate students for the course

on �nite tensor categories, since the latter encompasses the former. The

�nite tensor category course will gently introduce the students to the

subject, with examples to illustrate the theory and presenting some re-

cent developments in this subject. In this direction we will also o�er an

advanced course with further applications of tensor categories.

We hope you enjoy the school.
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Abstracts of courses

Introductory Courses

Lia Vas

University of the Sciences, Philadelphia

Introduction to graph algebras and attempts at their

classification

After a review of some necessary background in algebra, we introduce

classes of algebras related to a directed graph and present a hands-on

method of computing their (pointed) K0-groups. We put most of our

focus on Leavitt path algebras, but the methods we present can also be

used for other graph algebras.

The examples we present illustrate that the K0 group does not classify

Leavitt path algebras. However, if one considers the grading of these

algebras and adjusts the de�nition of theK0-group to re�ect the existence

of this grading, the situation becomes more interesting. The Graded

Classi�cation Conjecture states that this adjusted version of the (pointed)

K0-group is a complete invariant of Leavitt path algebras over a �eld.

After presenting some examples illustrating the conjecture, we discuss

the context in which this conjecture has been formulated, its current

status, its relations with other conjectures, and some ongoing research.
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Luz Adriana Mejía Castaño

Universidad del Norte, Colombia

Introduction to group representations

This is an introductory course on �nite group representations. The main

objective is to show how this theory allows us to obtain structural results

on �nite groups, showing the importance of studying representations.
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Gilles G. de Castro

Universidade Federal de Santa Catarina, Brazil

Daniel W. van Wyk

Dartmouth College,USA

On groupoid algebras with applications to Leavitt labelled

path algebras

Often an algebra is built from some underlying object such that properties

of the underlying object are re�ected in the structure of the algebra.

For example, some combinatorial properties of graphs determine certain

algebraic properties of Leavitt path algebras and similarly the for a partial

dynamical system and its associated partial skew-group ring. Groupoids

form a unifying framework for such algebras and provide us with another

toolkit to study them.

In the �rst part of this mini-course, we will introduce basic de�nitions

on ample groupoids and Steinberg algebras associated with them. With

a view toward labelled graphs, we will explore how Leavitt path alge-

bras and partial skew-group rings can be realised as Steinberg algebras.

We will present select results that are fundamental in the study of such

algebras.

In the second part of the mini-course, we will introduce labelled graphs

and labelled spaces as well as Leavitt labelled path algebras. This class

of algebras generalises both the usual Leavitt path algebras as well as a

large class of commutative algebras generated by idempotents. We will

give some conditions on partial actions so that their skew-group rings can

be realised as Leavitt labelled path algebras.
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Advanced Courses

Mombelli Martin

Universidad Nacional de Córdoba, Argentina

Finite Tensor Categories

A tensor category is an abelian category with a tensor product, a unit

object subject to associativity and unity axioms. This concept, intro-

duced by Maclane and Benabou, encodes the category of representations

of groups, Lie algebras and more generally of Hopf algebras. Finite ten-

sor categories are tensor categories subject to some �niteness conditions.

Basic examples come from the theory of �nite dimensional Hopf alge-

bras. Finite tensor categories appear encoding symmetries of distinct

mathematical structures. Their applications reach divers areas of mathe-

matics: subfactor theory, statistical mechanics and Hopf algebra theory.

This makes the problem of their classi�cation both a highly interesting

and di�cult one. In this course I will introduce the notion of �nite tensor

categories and its basic properties. We will present examples to illustrate

the theory.

11



Roozbeh Hazrat

Centre for Research in Mathematics and Data Science

Western Sydney University, Australia

Advanced topics in Leavitt path algebras

The classi�cation of Leavitt path algebras is one of the main topics in the

theory which has not yet been completed. Finding a right invariant for

classi�cation is one of the major problems in the theory. In this course

we concentrate on the Graded Classi�cation Conjecture, describing the

notion of graded Grothendieck groups as a possible complete invariant for

such algebras. We start with a short introduction on the graded methods

in algebras and then describe the graded Grothendieck groups. Along the

way we touch on the so called talented monoid of a directed graph which

seems to capture a substantial amount of geometry of the graph.
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Bojana Femic

MI SANU, Serbia

Bicategories, 2-monads, enriched and internal categories

For this course a preknowledge on monoidal categories is very helpful.

The preliminary plan for the three lectures is as follows.

After recalling the de�nition of a monoidal category we will introduce

bicategories and study some examples of them. We will de�ne pseud-

ofunctors between bicategories and we will introduce 2-monads as lax

functors from the trivial bicategory. We will also introduce T-algebras in

bicategories (over 2-monads T) and compare them to module categories

over tensor categories. We will show how a 2-monad in the bicategory

Span(C) of spans over a category C with pullbacks is an internal category

in C (actually, Benaboú de�nes them this way in his famous paper from

1967).

We will de�ne double categories, originally introduced by Charles Ehres-

mann in 1963, as categories internal in Cat1, the category of categories,

and also pseudodouble categories, as categories weakly internal in Cat1,

or internal in the 2-category Cat2 of categories. The latter is a special

case of pseudocategories, introduced by Martins, as categories internal to

2-categories. We will state the Stricti�cation Theorem for double cate-

gories and study the relation between bicategories and double categories.

We will introduce the bicategory Mat(C) of matrices over a category C

will products and illustrate its biequivalence with a sub-bicategory of

Span(C), under certain assumptions.

We will show that 2-monads in Mat(C) and in Span(C) are categories

enriched, respectively internal in V. We will illustrate the embedding of

the category C-Cat (categories enriched over C) into Cat(C) (categories

internal in C). We will comment on the analogous result for when C is

a certain type of tricategory, and illustrate it with the example of tensor

categories and module categories over them. We will also give examples

of the latter result in lower dimensions.
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Abstracts of talks

Héctor Pinedo Tapia

School of mathematics

Industrial university of Santander, Colombia

Partial actions and Galois theory of commutative rings

The concept of a Galois extension of commutative rings was introduced

by Auslander and Goldman (22), in which they laid the foundations for

separable extensions and de�ned the Brauer group of a commutative ring.

Later, in (25), Chase, Harrison and Rosenberg developed a Galois theory

of commutative rings by giving several equivalent de�nitions of a Galois

extension and specifying, to the case of a Galois extension, the Amitsur

cohomology seven terms exact sequence, given by Chase and Rosenberg

in (24). The Chase-Harrison-Rosenberg sequence can be viewed as a

common generalization of the two most fundamental facts from Galois

cohomology of �elds: Hilbert's Theorem 90 and the isomorphism of the

relative Brauer group with the second cohomology group of the Galois

group. When working with abelian groups and having the purpose of pre-

senting a Kummer's theory for commutative rings, Harrison constructed

in (32) the group of the isomorphism classes of abelian G-extensions of a

commutative ring. Since then much attention have been paid to the se-

quence and its parts subject to more constructive proofs, generalizations

of Harrison's group and analogs in various contexts.

Another point of view is to replace global actions by partial ones. The

latter are becoming an object of intensive research and have their origins

14



in the theory of operator algebras, and were initiated by Exel in (31). In

the algebraic context, a partial action of a group G on a ring R consists

of a family of ring isomorphisms α : {αg : Dg−1 → Dg}g∈G such that

any Dg is an ideal of R, αe is the identity map of R and αgh extends

αg ◦ αh, g, h ∈ G. The development of a Galois theory of partial actions

was initiated in (27) stimulating a growing algebraic activity around par-

tial actions, while the partial cohomology of groups was introduced and

studied in (28).

Having at hand partial Galois theory and partial group cohomology, we

may ask now what would be the analog of the Chase-Harrison-Rosenberg

exact sequence in the context of a partial Galois extension of commutative

rings and to explore Harrison's construction to the context of partial

Galois extensions. This talk is based on the papers (23), (29) and (30)

where these questions were answered. The interested audience may �nd

some other extension of Chase-Harrison-Rosenberg sequence in (26) and

(33).
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Mykola Khrypchenko

Universidade Federal de Santa Catarina, Brazil

Crossed modules over inverse semigroups,

crossed module extensions

and their cohomological interpretation

We introduce the notion of a crossed module over an inverse semigroup

which generalizes the notion of a module over an inverse semigroup in

the sense of Lausch (34), as well as the notion of a crossed module over

a group in the sense of Whitehead (37) and Maclane (36). With any

crossed S-module A we associate a 4-term exact sequence of inverse

semigroups A
i−→ N

β−→ S
π−→ T , which we call a crossed module extension

of A by T . We then introduce the so-called admissible crossed module

extensions and show that equivalence classes of admissible crossed

module extensions of A by T are in a one-to-one correspondence with

the elements of the cohomology group H3
≤(T

1, A1), whenever T is an

F -inverse monoid.

This is a joint work (35) with Mikhailo Dokuchaev (Universidade de São

Paulo) and Mayumi Makuta (Universidade de São Paulo).
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Dirceu Bagio

UFSM, Brazil

Representations of the restricted enveloping algebra u(m) in

characteristic 2.

Let k be an algebraically closed �eld of characteristic 2 and s the unique,

up to isomorphism, not restricted simple Lie algebra of dimension 3 over k
which has basis {e, h, f} and bracket [e, f ] = h, [e, h] = e and [f, h] = f .

The 2-closure m of s (that is, m is the smallest restricted Lie algebra that

contains s) is a 5-dimensional Lie algebra and its restricted enveloping

algebra u(m) is generated by a, b, c with de�ning relations

ef + fe = h, eh + he = e, fh + hf = f, e4 = f 4 = 0, h2 + h = 0.

We prove that u(m) is a special biserial algebra and hence it is of tame

representation type (38). The description of all indecomposable modules

of a special biserial algebra was given in Proposition 2.3 of (39). They

are either string modules or band modules. Using this description, we

present explicitly all families of �nite-dimensional indecomposable u(m)-

modules.

We are interested in the representation theory of u(m) by the following

reason. Let B(V ) be the restricted Jordan plane in characteristic 2.

Consider the Hopf algebra H = B(V )#kZ2 and D(H) the Drinfeld

double of H. Then there are a central Hopf subalgebra R of D(H) and

an exact sequence R ↪→ D(H) � u(m) of Hopf algebras. Therefore, we

obtain the forgetful functor u(m)M→D(H)M.

This is a joint work with N. Andruskiewitsch, S. D. Flora and D. Flôres.
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Guillermo Cortiñas

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires, Argentina

Bivariant algebraic K-theory and Leavitt path algebras

Bivariant algebraic K-theory, kk, is an algebraic version, de�ned for

algebras over a commutative ring `, of Kasparov's bivariant K-theory

KK of C∗-algebras. In the talk I will review diverse aspects of kk, its

properties, its relation to KK, its applications to Leavitt path algebras,

and some open problems.
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Thaísa Tamusiunas

Instituto de Matemática e Estatística

Universidade federal de Porto Alegre, Brazil

Group-type partial actions of groupoids and a Galois

correspondence

The usual notion of Galois extension over �elds was extended for com-

mutative rings by M. Auslander and O. Goldman in (22). Some years

later, the Galois theory over commutative rings was developed by S. U.

Chase, D. K. Harrison and A. Rosenberg in (25). They presented several

equivalent conditions for the de�nition of Galois extension. Among the

main results, they proved a Galois correspondence in the context of com-

mutative rings. Precisely, if R ⊂ S is a Galois extension of commutative

rings with Galois group G, then there exists a bijective association be-

tween the set of subgroups of G and the set of R-subalgebras of S which

are G-strong and R-separable.

In the 1990's, R. Exel introduced the notion of partial actions of a

group in the theory of operator algebras, see for instance (19) and (20).

The same notion in an algebraic context was considered in (17). Particu-

larly, it was de�ned partial actions of groups on rings which is the key to

develop a partial Galois theory. So, the Galois theory for partial actions

of groups on rings was presented two years later in (27) generalizing the

results of (25).

On the other hand, in the context of category theory, a groupoid is a

small category in which every morphism has inverse. However, a groupoid

can be seen as a natural generalization of a group. In fact, a groupoid is

a set G equipped with a set of identities G0 ⊂ G and a binary operation

de�ned partially which is associative and, for each g ∈ G, there exist

g−1 ∈ G such that g−1g = s(g) ∈ G0 and gg−1 = t(g) ∈ G0. If G0 has

a unique element then G is a group. This algebraic version of groupoids

motivated the authors of (12) to consider partial actions of groupoids on

rings. In particular, it was de�ned in (12) the notion of Galois extension

for partial actions of groupoids. A version of the Galois correspondence

19



for global actions of groupoids on commutative rings was given in (21).

An special class of partial actions of connected groupoids was studied

in (14). This class was named group-type partial groupoid actions and

this name is due to the fact that the partial skew groupoid ring associated

can be realized as a partial skew group ring; see details in Theorem 4.4

of (14). It is easy to construct examples of group-type partial actions of

groupoids using the formulas given in (4) and (5) of (13). In particular,

every global groupoid action is a group-type partial action.

The main contribution of this talk is to show a Galois correspondence

for group-type partial actions of groupoids. This correspondence is sub-

mitted in a recent paper joint with D. Bagio and A. Sant'Ana (cf. (15)).

Precisely, let α = (Sg, αg)g∈G be a unital group-type partial action of a

connected �nite groupoid G on a comutative ring S = ⊕y∈G0Sy. For each

subgroupoid H of G, we consider αH = (Sh, αh)h∈H the partial action of H

on SH = ⊕y∈H0Sy. Denote by S
αH the subring of invariant elements. On

the other hand, GT denotes the set of elements of G that �x T , where T

is a subring of S. Consider the set wSubg(G) whose elements are wide

subgroupoids H of G such that αH is group-type. Also, let B(S) be the

set of all subrings T of S which are SαG-separable, α-strong and such

that GT = H, for some H ∈ wSubg(G). With this notation, we have the

following Galois correspondence.

Theorem. (Galois Correspondence) Let S be an αG-partial Ga-

lois extension of SαG. There exists a bijective correspondence between

wSubg(G) and B(S) given by H 7→ SαH whose inverse is given by

T 7→ GT .

The Galois correspondence for not-necessarily connected groupoids fol-

lows from the connected case. The previous theorem recover the Galois

correspondence for global groupoid actions given in Theorem 4.6 (i) of

(21).
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Francesca Mantese

Università di Verona, Italy

Injective modules over Leavitt path algebras

Leavitt path algebras have a well-studied, extremely tight relationship

with their projective modules. On the other hand, very little is hereto-

fore known about the structure of their injective modules. In a ongoing

joint project with Gene Abrams and Alberto Tonolo, we aim to describe

the injective modules over an arbitrary Leavitt path algebra LK(E). In

this talk we present some techniques to construct indecomposable injec-

tive modules over LK(E), based on the graph properties of E. As an

application, we completely characterize the injective modules over the

class of Leavitt path algebras where any vertex is basis of at most one

cycle, as for instance the Jacobson algebra.

21



Yolanda Cabrera Casado

University of Málaga, Spain

Natural families in evolution algebras

The modeling of non-mendelian genetics brought forth a new type of

genetic algebras called evolution algebras. Basic concepts of evolution

algebras of arbitrary dimension are studied. The notion of the range of

evolution, natural vector, and subspace of evolution is introduced, and

there is a decomposition of evolution algebras relative to the latter. This

is a joint work with Mercedes Siles Molina and Nadia Boudi.
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Ben Steinberg

The City College of New York, USA

Simplicity of Nekrashevych algebras of contracting

self-similar groups

A self-similar group is a group G acting on the Cayley graph of a �nitely

generated free monoid X∗ (i.e., regular rooted tree) by automorphisms

in such a way that the self-similarity of the tree is re�ected in the group.

The most common examples are generated by the states of a �nite au-

tomaton. Many famous groups, like Grigorchuk's 2-group of intermediate

growth are of this form. Nekrashevych associated C∗-algebras and alge-

bras with coe�cients in a �eld to self-similar groups. In the case G is

trivial, the algebra is the classical Leavitt algebra, a famous �nitely pre-

sented simple algebra. Nekrashevych showed that the algebra associated

to the Grigorchuk group is not simple in characteristic 2, but Clark, Exel,

Pardo, Sims and Starling showed its Nekrashevych algebra is simple over

all other �elds. Nekrashevych then showed that the algebra associated

to the Grigorchuk-Erschler group is not simple over any �eld (the �rst

such example). The Grigorchuk and Grigorchuk-Erschler groups are con-

tracting self-similar groups. This important class of self-similar groups

includes Gupta-Sidki p-groups and many iterated monodromy groups like

the Basilica group. Nekrashevych proved algebras associated to contact-

ing groups are �nitely presented.

In this talk we discuss a recent result of the speaker and N. Szakacs

(Manchester) characterizing simplicity of Nekrashevych algebras of con-

tracting groups. In particular, we give an algorithm for deciding sim-

plicity given an automaton generating the group. We apply our results

to several families of contracting groups like Gupta-Sidki groups, GGS

groups and Sunic's generalizations of Grigorchuk's group associated to

polynomials over �nite �elds.
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Al�gen Sebandal

MSU, Iligan Institute of Technology, Philippines

A Talented Monoid view on Lie Bracket algebras arising from

Leavitt Path algebras

In this talk, we translate known results in simplicity, solvability, and

nilpotency of Lie algebras arising from Leavitt Path algebras in the lan-

guage of Talented monoids. We show that there is a direct relation be-

tween solvability and the Gelfand-Kirillov dimension. Moreover, we give

a complete new classi�cation of a balloon and shed light to the question

when the derived Lie Algebra is simple.
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Daniel Gonçalves

UFSC, Brazil

Chaos on ultragraph shift spaces

In this short talk, we introduce ultragraph shift spaces, their metrics, and

describe the ultragraphs for which the associated shift space is chaotic.

We will also mention some relations of ultragraph shift spaces and ultra-

graph algebras.
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Abstracts of posters

Christian Garcia

PPGMAT, UFRGS, Brazil

A generalized Galois correspondence for finite groupoids

Let R be a ring with unity, G be a �nite groupoid and β =

{{Eg}g∈G, {βg}g∈G} be an action of G on R. If R is a Kβ-ring, we present

a one-to-one correspondence between the wide subgroupoids of G and the

subrings of R that are β -admissible. This correspondence recover the

one presented by H. F. Kreimer in (10) for group actions, as well as the

correspondence presented by A. Paques and T. Tamusiunas in (9) for

groupoid actions on commutative rings.
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Douglas Finamore

Departamento de Matemática, ICMC/USP, Brazil

Contact actions of Rk and their underlying foliations

We work with contact actions of Rk: objects which generalise to higher

dimensions the R-action on a contact manifold induced by the �ow of its

Reeb �eld. For such actions one can pose two generalisations of the

Weinstein conjecture. We show that the strongest of these conjectures

holds in the particular case of closed Riemannian manifolds on which the

contact action of Rk is an action via isometries.
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Dzoara Núñez

PPGM

Universidade Federal do Amazonas, Manaus

The Quiver Representation Variety

The goal of quiver representation theory, is classify all representations of

a given quiver Q and all morphisms between them up to isomorphism.

But some of the algebras associated to a quiver are wild, in the sense that

the problem of classi�cation of their representations and their irreducible

morphism is di�cult or sometimes impossible. The main obstacle in this

case is the dependence of the isomorphism classes of representations on

arbitrarily many continuous parameters, to which many of the classical

tools of the representation theory of algebras do not apply. The aim in

this poster is to motivate the geometric approach to the classi�cation

problem, from the point of view of Reineke.

We will see that the isomorphism classes of representations of a �xed

vector dimension v, have a nice geometric structure. They correspond to

orbits of a certain algebraic group GL acting over a certain variety. This

structure allows us to study the classi�cation of quiver representations

using geometric techniques. We will present the above theory and some

examples.
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Francielle Kuerten Boeing

PPGMTM

UFSC, Florianópolis

Quantum inverse semigroups

The notion of a quantum inverse semigroup is introduced as a linearized

generalization of inverse semigroups. Beyond the algebra of an inverse

semigroup, which is the natural example of a quantum inverse semigroup,

several other examples of this new structure are presented in di�erent

contexts, related to Hopf structures. Finally, a generalized notion of local

bissections is de�ned for Hopf algebroids over a commutative base algebra

giving rise to new examples of quantum inverse semigroups associated to

Hopf algebroids in the same sense that inverse semigroups are related to

groupoids.
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Igor Alarcon Blatt

Department of Mathematics

Universidade Federal Fluminense, Brazil

Ribbon Categories and RT Invariants

Our main goal is to present the construction of knot invariants from a

quasi-triangular Hopf algebra, using the structures present in its category

of �nite dimensional representations. We'll present the basic de�nitions

for these algebras and, as we go along, introduce a pictorial technique for

representing morphisms in these categories in a way that we can relate to

knot diagrams. It is well known that the category of �nite dimensional

representations of the quantum group Uq(sl2) carries the structure of a

ribbon category. We present a computer program which computes the

associated Reshetikhin�Turaev invariant of an inputted knot.
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Juliana Pedrotti

PPGMAT

UFRGS, Brazil

Induced maps of the Galois map for groupoid actions

Any action of a groupoid on a ring (not necessarily commutative) gives

rise to a natural map from the set of the subgroupoids into the set of

subrings, which we call the Galois map for groupoid actions. In this

work we will introduce some induced maps of the Galois map and study

relations between them. Furthermore, we give some conditions for the

Galois map for groupoid actions to be injective.
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Laura Orozco

Department of Mathematics

Universidad Industrial de Santander, Colombia

Leavitt Path Algebras as Partial Skew Group Rings

We realize Leavitt path algebras as partial skew group rings, making a

modi�cation to the proposed construction in (8). Also, we will mention

some theorems for which it is useful to use this realization.
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Matheus Bordin Marchi

PPGMTM

UFSC, Florianópolis

A C-module functor equivalence involving internal Homs

Let C = (C,⊗, a, l, r,1) be a �nite tensor category over k andM a left

C-module category. For any pair of objects M,N ∈ M we can de�ne

an object Hom(M,N) in C called internal Hom object from M to N .

The object Hom(M,M) is an algebra in C and thus we can de�ne a left

C-module category of right Hom(M,M)-modules denoted as CHom(M,M).

An application of this theory can be seen with an equivalence of C-module

categories fromM to CHom(M,M), whenever the categoryM is also exact,

indecomposable and M ∈M is simple.
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Paolo Saracco

Dep. de Mathématiques

Université Libre de Bruxelles, Belgium

Globalization for Geometric Partial Comodules

The study of partial symmetries (such as partial dynamical systems, par-

tial (co)actions, partial comodule algebras) is a recent �eld in continuous

expansion, whose origins can be traced back to the study of C∗-algebras

generated by partial isometries.

One of the central questions in the study of partial symmetries is the ex-

istence and uniqueness of a so-called globalization (or enveloping action).

We propose here a uni�ed approach to globalization in a categorical set-

ting and we provide a procedure to construct globalizations in concrete

cases of interest.

Our approach relies on the notion of geometric partial comodules.
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Wesley G. Lautenschlaeger

PPGMAT

UFRGS, Porto Alegre, Brazil

Partial Actions of Restriction Semigroupoids

Semigroupoids are generalizations of semigroups considering a partially

de�ned binary operation instead of a totally de�ned one. Many well-

known structures arise in this way: groupoids are generalizations of

groups and categories are generalizations of monoids. However, the most

studied classes of semigroupoids always have inverses or bilateral unities.

Our goal is to de�ne unilateral restriction semigroupoids, generalizing

unilateral restriction semigroups. Furthermore, aiming to study its par-

tial actions, we de�ne the Szendrei expansion for unilateral restriction

semigroupoids and present an Ehresmann�Schein�Nambooripad theorem

that relates restriction semigroupoids and weakly locally inductive con-

stellations.
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Juan Orendain

Centro de Ciencias Matemáticas

Universidad Nacional Autónoma de México, Mexico

Discrete homotopies and path groupoids of simplicial sets

A discrete path on a simplicial set X is a simplicial map from a trian-

gulation of the standard interval into X . We study di�erent notions of

relative homotopy between discrete paths and we study the correspond-

ing path groupoids they de�ne. We consider discrete relative homotopies,

discrete thin homotopies and cycle thin homotopies. The groupoids de-

�ned de�ne continuous path groupoids as Kan extensions along geometric

realization, and thus serve as discrete aproximations to their continuous

analogues. We explore the question of how to extend these ideas to higher

dimensional cubical/globular groupoids.
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