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Groupoids

Let G be a groupoid and G0 the set of objects of G.

Given x , y ∈ G0 we set

G(x , y) := {g ∈ G : s(g) = x and t(g) = y}.

Notice that G(x) := G(x , x) is a group which will be called the
isotropy group associated to x.

G(2) = {(g,h) ∈ G×G : s(g) = t(h)} denote the set of pairs of
G which are composable. It is clear that

s(g) = g−1g, t(g) = gg−1, s(gh) = s(h), t(gh) = t(g),

for all x ∈ G0, g ∈ G and (g,h) ∈ G(2)
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Connected Groupoids

A groupoid G is connected if G(x , y) ̸= ∅ for all x , y ∈ G0.

Any groupoid is a disjoint union of connected subgroupoids.
Indeed, the equivalence relation on G0 given by

x ∼ y if and only if G(x , y) ̸= ∅, x , y ∈ G0,

induces the decomposition G = ∪̇Y∈G0 /∼ GY of G in connected
components. For each equivalence class Y ∈ G0 /∼, the set of
the objects of GY is Y and GY (x , y) = G(x , y) for all x , y ∈ Y .
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Characterization of connected groupoids

A connected groupoid G is completely determined by any of its
isotropy groups and its objects, in the following way.

A transversal in G for x is a map τ : G0 → G, τ(y) = τy , such
that τy ∈ G(x , y) for all y ∈ G0 and τx = x . We then have
bijections

τ : G(y , z) → G(x), τ(g) = τ−1
z gτy , y , z ∈ G0 .

Now consider the groupoid H = G2
0 ×G(x). We have H0 = G0.

The composition is given by (z,u, k)(y , z, l) = (y ,u, kl).
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Proposition 1.1
We have an isomorphism of groupoids ψ between G and H. It is
the identity at the level of objects. At the level of morphisms, we
have

ψ(y , z) : G(y , z) → H(y , z), ψ(y , z)(g) = (y , z, τ(g)).
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Partial Actions

Definition 2.1
A unital partial action of a groupoid G on a ring S is a family of
pairs α = (Sg , αg)g∈G, where Sg is a two-sided ideal generated
by a central idempotent 1g of S and αg : Sg−1 → Sg is an
isomorphism of rings, that satisfies:
(i) 1g1t(g) = 1g (or equivalently Sg ⊂ St(g)), for all g ∈ G,

(ii) for each x ∈ G0, αx = idSx is the identity map of Sx ,

(iii) α−1
h (Sg−1 ∩ Sh) ⊆ S(gh)−1 , for all (g,h) ∈ G(2),

(iv) αg(αh(a)) = αgh(a), for all a ∈ α−1
h (Sg−1 ∩ Sh) and

(g,h) ∈ G(2).
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The items (iii) and (iv) above imply that αgh is an extension of
αgαh. When αgαh = αgh, for all (g,h) ∈ G(2), we say that α is
global.

From now on, partial action means unital partial action.
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Remark 2.2
Let α = (Sg , αg)g∈G be a partial action of a groupoid G on a ring
S, x ∈ G0 and H a subgroupoid of G. Then:
(i) the isotropy group G(x) acts partially on Sx via

αG(x) := (Sg , αg)g∈G(x),

(ii) if x ∈ H0 then αH(x) := (Sh, αh)h∈H(x) is a partial action of
H(x) on Sx ; in this case αH(x) is the restriction of αG(x) to
H(x),

(iii) if S =
⊕

y∈G0
Sy and H is a subgroupoid of G then we can

consider the restriction αH := (Sh, αh)h∈H of α to H which
is a partial action of H on SH :=

⊕
z∈H0

Sz .
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Partial Actions of Group-type

The definition of group-type partial action is due to Bagio,
Paques and Pinedo:

• [BPP] D. Bagio, A. Paques and H. Pinedo, On partial skew
groupoids rings, Internat. J. Algebra Comput. 31 (1) (2021),
1–17.

Definition 2.3
A partial action α = (Sg , αg)g∈G of a connected groupoid G on
S is called group-type if there exist and element x ∈ G0 and a
transversal τ = {τy}y∈G0 in G for x such that

S
τ−1

y
= Sx and Sτy = Sy , for all y ∈ G0 . (1)
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Any global groupoid action α = (Sg , αg)g∈G of G on S is
group-type. In fact, Lemma 1.1 of

• [DP] D. Bagio, A. Paques, Partial groupoid actions:
globalization, Morita theory and Galois theory, Comm. Algebra
40 (10) (2012), 3658–3678.

implies that Sg = St(g), for all g ∈ G. Hence (1) is satisfied and
α is group-type. For examples of group-type partial actions that
are not global we refer §3.2 of [BPP].
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Remark 2.4
Assume that α is a group-type partial action of G on S and
consider τ = {τy}y∈G0 a transversal in G for x such that (1) is
true. Given z ∈ G0, fix the set γ = {τyτ

−1
z }y∈G0 . By Remark 3.4

of [BPP], γ is a transversal in G for z that also satisfies (1).
Thus, the notion of group-type partial action does not depend
on the choice of the object x.
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Now we will extend the notion of group-type partial action to
groupoids that are not necessarily connected.

Let G be a groupoid and G = ∪Y∈L0 /∼ GY its decomposition in
disjoint connected components. Assume that α = (Sg , αg)g∈G
is a partial action of G on a ring S and that S = ⊕z∈G0Sz . In this
case, for each Y ∈ G0 /∼ we have a partial action αY of GY on
SY , where

SY :=
⊕
y∈Y

Sy , αY := (Sg , αg)g∈GY .
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Definition 2.5
Let G be a groupoid and α = (Sg , αg)g∈G a partial action of G
on the ring S = ⊕z∈G0Sz . We say that α is group-type if the
partial action αY of the connected groupoid GY on SY is
group-type (in the sense of Definition 2.3), for all Y ∈ G0 /∼.
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Galois Theory

A Galois correspondence for global actions was given in

• [PT] A. Paques, T. Tamusiunas, The Galois correspondence
theorem for groupoid actions, J. Algebra 509 (2018), 105–123.

Next step: Galois correspondence for partial actions.
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Let G be a finite groupoid and let α = (Sg , αg)g∈G be a partial
action of G on a commutative ring S. We will assume Sg = S1g ,
where 1g is a central idempotent of S, 1g ̸= 0, for all g ∈ G.

Thaı́sa Tamusiunas Group-type partial actions of groupoids and a Galois correspondence



Connected Groupoids Partial Actions of Group-type Galois Theory

Definition 3.1
The ring extension R ⊂ S is called an αG-partial Galois
extension if
R = SαG := {s ∈ S : αg(s1g−1) = s1g , for all g ∈ G} and there
exist a positive integer m and elements ai ,bi ∈ S, 1 ≤ i ≤ m,
such that∑

1≤i≤m

aiαg(bi1g−1) =
∑
z∈G0

δz,g1z , for all g ∈ G . (2)

The set {ai ,bi}1≤i≤m is called a partial Galois coordinate
system of S over R.
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Proposition 3.2
Let R = SαG and Rj = Sαj

j , for each 1 ≤ j ≤ r . Then R ⊂ S is
an αG-partial Galois extension if and only if Rj ⊂ Sj is an
αj -partial Galois extension, for all 1 ≤ j ≤ r .

Thaı́sa Tamusiunas Group-type partial actions of groupoids and a Galois correspondence



Connected Groupoids Partial Actions of Group-type Galois Theory

Definition 3.3
The set

SαG := {a ∈ S : αg(a1g−1) = a1g , for all g ∈ G}

is called subring of invariant elements of S.
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Given a subring T of S, we will denote by GT the set of
elements of G which act trivially on T , that is,

GT := {g ∈ G : αg(t1g−1) = t1g , for all t ∈ T}.
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Proposition 3.4
Let T = SαH , Tyj = S

αHj (yj )

yj
for all j = 1, . . . , r and g ∈ G. The

following assertions are satisfied:
(i) GT is a wide subgroupoid of G if and only if G(yj)Tyj

is a
subgroup of G(yj), for all 1 ≤ j ≤ r ,

(ii) GT = H if and only if G(yj)Tyj
= Hj(yj), for all 1 ≤ j ≤ r .
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We recall that a unital ring extension R ⊂ T is called separable
if the multiplication map m : T ⊗R T → T is a splitting
epimorphism of T -bimodules. This is equivalent to saying that
there exists an element e ∈ T ⊗R T such that te = et , for all
t ∈ T , and m(e) = 1T . Such an element e is usually called an
idempotent of separability of T over R.
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Let

L(G) = {H : H is a subgroupoid of G and αH is group-type}

and

Lw (G) := {H ∈ L(G) : H0 = G0}.

Thaı́sa Tamusiunas Group-type partial actions of groupoids and a Galois correspondence



Connected Groupoids Partial Actions of Group-type Galois Theory

Let

L(G) = {H : H is a subgroupoid of G and αH is group-type}

and

Lw (G) := {H ∈ L(G) : H0 = G0}.

Thaı́sa Tamusiunas Group-type partial actions of groupoids and a Galois correspondence



Connected Groupoids Partial Actions of Group-type Galois Theory

Lemma 3.5
Let H ∈ Lw (G), T = SαH and R = SαG . For each 1 ≤ j ≤ r ,
consider Tyj = S

αHj (yj )

yj
and Ryj = S

αG(yj )

yj
. Then the following

statements are equivalent:
(i) R ⊂ T is separable,

(ii) Ryj ⊂ Tyj is separable, for all 1 ≤ j ≤ r .
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Definition 3.6
Let T be a subring of S and Ty := T1y , for all y ∈ G0.
(i) The subring Ty of Sy will be called αG(y ,z)-strong if for any

g,h ∈ G(y , z) such that g−1h /∈ G(y)Ty and for any
non-zero idempotent e ∈ Sg ∪ Sh, there exists ty ∈ Ty such
that αg(ty1g−1)e ̸= αh(ty1h−1).

(ii) We shall say that T is α-strong if Ty is αG(y ,z)-strong for all
y , z ∈ G0.
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Proposition 3.7
Let H ∈ Lw (G), T = SαH and Tyj = S

αHj (yj )

yj
for all 1 ≤ j ≤ r . The

following statements are equivalent:
(i) T is α-strong,

(ii) for any g,h ∈ G such that t(g) = t(h) and g−1h /∈ GT and
for any non-zero idempotent e ∈ Sg ∪Sh, there exists t ∈ T
such that αg(t1g−1)e ̸= αh(t1h−1)e,

(iii) Tyj is αG(yj )-strong for all 1 ≤ j ≤ r .
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In the next two propositions we establish the Galois
correspondence.

Proposition 3.8
Let S be an αG-partial Galois extension of R = SαG , H ∈ Lw (G)
and T = SαH . Then
(i) T is R-separable and α-strong,

(ii) GT = H.
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Proposition 3.9
Let S be an αG-partial Galois extension of R := SαG , T an
R-separable and α-strong subring of S such that GT = H,
where H ∈ Lw (G). Then SαH = T .
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Let R = SαG and denote by B(S) the set of all subrings T of S
which are R-separable, α-strong and such that GT = H, for
some H ∈ Lw (G).

Theorem 3.10
(Galois Correspondence) Let αG = (Sg , αg)g∈G be a unital
group-type partial action of a finite groupoid G on a ring S such
that Sg = S1g and 1g ̸= 0, for all g ∈ G. If S is an αG-partial
Galois extension of SαG then there exists a bijective
correspondence between Lw (G) and B(S) given by H 7→ SαH

whose inverse is given by T 7→ GT .
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The problem of determining a Galois correspondence for partial
groupoid actions (not necessarily of group-type) remains an
open question.
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