< 日 > < 回 > < 回 > < 回 > < 回 > <

Group-type partial actions of groupoids and a Galois correspondence

Thaísa Tamusiunas

Universidade Federal do Rio Grande do Sul Cimpa School - From Dynamics to Algebra and Representation Theory and Back

This is a joint work with D. Bagio and A. Sant'Ana

Connected Groupoids

Partial Actions of Group-type

Galois Theory

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Connected Groupoids

Partial Actions of Group-type

Galois Theory

Galois Theory

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Groupoids

Let G be a groupoid and G_0 the set of objects of G.

Galois Theory

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Groupoids

Let G be a groupoid and G_0 the set of objects of G.

Given $x, y \in G_0$ we set

$$\mathsf{G}(x,y) := \{g \in \mathsf{G} : s(g) = x \text{ and } t(g) = y\}.$$

Notice that G(x) := G(x, x) is a group which will be called the *isotropy group associated to x*.

Groupoids

Let G be a groupoid and G_0 the set of objects of G.

Given $x, y \in G_0$ we set

$$\mathsf{G}(x,y):=\{g\in\mathsf{G}:s(g)=x \text{ and } t(g)=y\}.$$

Notice that G(x) := G(x, x) is a group which will be called the *isotropy group associated to x*.

 $G^{(2)} = \{(g, h) \in G \times G : s(g) = t(h)\}$ denote the set of pairs of G which are composable. It is clear that

$$s(g) = g^{-1}g, \ t(g) = gg^{-1}, \ s(gh) = s(h), \ t(gh) = t(g),$$

for all $x \in G_0$, $g \in G$ and $(g, h) \in G^{(2)}$

Connected Groupoids

Partial Actions of Group-type

Galois Theory

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Connected Groupoids

A groupoid G is *connected* if $G(x, y) \neq \emptyset$ for all $x, y \in G_0$.

Galois Theory

<ロ> <同> <同> < 同> < 同> < 同> 、

3

Connected Groupoids

A groupoid G is *connected* if $G(x, y) \neq \emptyset$ for all $x, y \in G_0$.

Any groupoid is a disjoint union of connected subgroupoids.

ヘロト 人間 ト 人造 ト 人造 ト

Connected Groupoids

A groupoid G is *connected* if $G(x, y) \neq \emptyset$ for all $x, y \in G_0$.

Any groupoid is a disjoint union of connected subgroupoids. Indeed, the equivalence relation on G_0 given by

$$x \sim y$$
 if and only if $G(x, y) \neq \emptyset$, $x, y \in G_0$,

induces the decomposition $G = \bigcup_{Y \in G_0} /\sim G_Y$ of G in connected components. For each equivalence class $Y \in G_0 /\sim$, the set of the objects of G_Y is Y and $G_Y(x, y) = G(x, y)$ for all $x, y \in Y$.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Characterization of connected groupoids

A connected groupoid G is completely determined by any of its isotropy groups and its objects, in the following way.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Characterization of connected groupoids

A connected groupoid G is completely determined by any of its isotropy groups and its objects, in the following way.

A *transversal* in G for x is a map $\tau : G_0 \to G$, $\tau(y) = \tau_y$, such that $\tau_y \in G(x, y)$ for all $y \in G_0$ and $\tau_x = x$. We then have bijections

$$au: \mathsf{G}(\mathbf{y}, \mathbf{z})
ightarrow \mathsf{G}(\mathbf{x}), \quad au(\mathbf{g}) = au_{\mathbf{z}}^{-1} \mathbf{g} au_{\mathbf{y}}, \quad \mathbf{y}, \mathbf{z} \in \mathsf{G}_0.$$

・ロト ・四ト ・ヨト ・ヨト

Characterization of connected groupoids

A connected groupoid G is completely determined by any of its isotropy groups and its objects, in the following way.

A *transversal* in G for x is a map $\tau : G_0 \to G$, $\tau(y) = \tau_y$, such that $\tau_y \in G(x, y)$ for all $y \in G_0$ and $\tau_x = x$. We then have bijections

$$au: \mathsf{G}(\mathbf{y}, \mathbf{z})
ightarrow \mathsf{G}(\mathbf{x}), \quad au(\mathbf{g}) = au_{\mathbf{z}}^{-1} \mathbf{g} au_{\mathbf{y}}, \quad \mathbf{y}, \mathbf{z} \in \mathsf{G}_0 \,.$$

Now consider the groupoid $H = G_0^2 \times G(x)$. We have $H_0 = G_0$. The composition is given by (z, u, k)(y, z, l) = (y, u, kl).

<ロ> <同> <同> < 同> < 同> < 同> 、

э

Proposition 1.1

We have an isomorphism of groupoids ψ between G and H. It is the identity at the level of objects. At the level of morphisms, we have

$$\psi(\mathbf{y}, \mathbf{z}) : \mathsf{G}(\mathbf{y}, \mathbf{z}) \to H(\mathbf{y}, \mathbf{z}), \quad \psi(\mathbf{y}, \mathbf{z})(\mathbf{g}) = (\mathbf{y}, \mathbf{z}, \tau(\mathbf{g})).$$

Partial Actions

Definition 2.1

A unital partial action of a groupoid G on a ring S is a family of pairs $\alpha = (S_g, \alpha_g)_{g \in G}$, where S_g is a two-sided ideal generated by a central idempotent 1_g of S and $\alpha_g : S_{g^{-1}} \rightarrow S_g$ is an isomorphism of rings, that satisfies:

(i) 1_g1_{t(g)} = 1_g (or equivalently S_g ⊂ S_{t(g)}), for all g ∈ G,
(ii) for each x ∈ G₀, α_x = id_{Sx} is the identity map of S_x,
(iii) α_h⁻¹(S_{g⁻¹} ∩ S_h) ⊆ S_{(gh)⁻¹}, for all (g, h) ∈ G⁽²⁾,
(iv) α_g(α_h(a)) = α_{gh}(a), for all a ∈ α_h⁻¹(S_{g⁻¹} ∩ S_h) and (g, h) ∈ G⁽²⁾.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The items (iii) and (iv) above imply that α_{gh} is an extension of $\alpha_{g}\alpha_{h}$. When $\alpha_{g}\alpha_{h} = \alpha_{gh}$, for all $(g, h) \in G^{(2)}$, we say that α is *global*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The items (iii) and (iv) above imply that α_{gh} is an extension of $\alpha_{g}\alpha_{h}$. When $\alpha_{g}\alpha_{h} = \alpha_{gh}$, for all $(g, h) \in G^{(2)}$, we say that α is *global*.

From now on, partial action means unital partial action.

Remark 2.2 Let $\alpha = (S_g, \alpha_g)_{g \in G}$ be a partial action of a groupoid G on a ring S, $x \in G_0$ and H a subgroupoid of G. Then:

(i) the isotropy group G(x) acts partially on S_x via $\alpha_{G(x)} := (S_g, \alpha_g)_{g \in G(x)},$

< 日 > < 回 > < 回 > < 回 > < 回 > <

Remark 2.2

Let $\alpha = (S_g, \alpha_g)_{g \in G}$ be a partial action of a groupoid G on a ring $S, x \in G_0$ and H a subgroupoid of G. Then:

- (i) the isotropy group G(x) acts partially on S_x via $\alpha_{G(x)} := (S_g, \alpha_g)_{g \in G(x)}$,
- (ii) if $x \in H_0$ then $\alpha_{H(x)} := (S_h, \alpha_h)_{h \in H(x)}$ is a partial action of H(x) on S_x ; in this case $\alpha_{H(x)}$ is the restriction of $\alpha_{G(x)}$ to H(x),

・ロト ・四ト ・ヨト ・ヨト

Remark 2.2

Let $\alpha = (S_g, \alpha_g)_{g \in G}$ be a partial action of a groupoid G on a ring $S, x \in G_0$ and H a subgroupoid of G. Then:

- (i) the isotropy group G(x) acts partially on S_x via $\alpha_{G(x)} := (S_g, \alpha_g)_{g \in G(x)}$,
- (ii) if $x \in H_0$ then $\alpha_{H(x)} := (S_h, \alpha_h)_{h \in H(x)}$ is a partial action of H(x) on S_x ; in this case $\alpha_{H(x)}$ is the restriction of $\alpha_{G(x)}$ to H(x),
- (iii) if $S = \bigoplus_{y \in G_0} S_y$ and H is a subgroupoid of G then we can consider the restriction $\alpha_H := (S_h, \alpha_h)_{h \in H}$ of α to H which is a partial action of H on $S_H := \bigoplus_{z \in H_0} S_z$.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

э

Partial Actions of Group-type

The definition of group-type partial action is due to Bagio, Paques and Pinedo:

• [BPP] D. Bagio, A. Paques and H. Pinedo, *On partial skew groupoids rings*, Internat. J. Algebra Comput. 31 (1) (2021), 1–17.

The definition of group-type partial action is due to Bagio, Paques and Pinedo:

• [BPP] D. Bagio, A. Paques and H. Pinedo, *On partial skew groupoids rings*, Internat. J. Algebra Comput. 31 (1) (2021), 1–17.

Definition 2.3

A partial action $\alpha = (S_g, \alpha_g)_{g \in G}$ of a connected groupoid G on S is called group-type if there exist and element $x \in G_0$ and a transversal $\tau = {\tau_y}_{y \in G_0}$ in G for x such that

$$S_{\tau_y^{-1}} = S_x \text{ and } S_{\tau_y} = S_y, \text{ for all } y \in G_0.$$
 (1)

・ロト ・四ト ・ヨト ・ヨト

・ロト ・四ト ・ヨト ・ヨト

Any global groupoid action $\alpha = (S_g, \alpha_g)_{g \in G}$ of *G* on *S* is group-type. In fact, Lemma 1.1 of

• [DP] D. Bagio, A. Paques, *Partial groupoid actions:* globalization, Morita theory and Galois theory, Comm. Algebra 40 (10) (2012), 3658–3678.

implies that $S_g = S_{t(g)}$, for all $g \in G$. Hence (1) is satisfied and α is group-type. For examples of group-type partial actions that are not global we refer § 3.2 of [BPP].

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

Remark 2.4

Assume that α is a group-type partial action of G on S and consider $\tau = {\tau_y}_{y \in G_0}$ a transversal in G for x such that (1) is true. Given $z \in G_0$, fix the set $\gamma = {\tau_y \tau_z^{-1}}_{y \in G_0}$. By Remark 3.4 of [BPP], γ is a transversal in G for z that also satisfies (1). Thus, the notion of group-type partial action does not depend on the choice of the object x.

Galois Theory

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Now we will extend the notion of group-type partial action to groupoids that are not necessarily connected.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Now we will extend the notion of group-type partial action to groupoids that are not necessarily connected.

Let G be a groupoid and $G=\cup_{Y\in L_0\nearrow}G_Y$ its decomposition in disjoint connected components.

・ロト ・四ト ・ヨト ・ヨト

Now we will extend the notion of group-type partial action to groupoids that are not necessarily connected.

Let G be a groupoid and $G = \bigcup_{Y \in L_0 / \sim} G_Y$ its decomposition in disjoint connected components. Assume that $\alpha = (S_g, \alpha_g)_{g \in G}$ is a partial action of G on a ring S and that $S = \bigoplus_{z \in G_0} S_z$. In this case, for each $Y \in G_0 / \sim$ we have a partial action α_Y of G_Y on S_Y , where

$$S_Y := \bigoplus_{y \in Y} S_y, \qquad \qquad \alpha_Y := (S_g, \alpha_g)_{g \in G_Y}.$$

Definition 2.5

Let G be a groupoid and $\alpha = (S_g, \alpha_g)_{g \in G}$ a partial action of G on the ring $S = \bigoplus_{z \in G_0} S_z$. We say that α is group-type if the partial action α_Y of the connected groupoid G_Y on S_Y is group-type (in the sense of Definition 2.3), for all $Y \in G_0 / \sim$.

Galois Theory

Galois Theory

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・ ・

A Galois correspondence for **global** actions was given in

• [PT] A. Paques, T. Tamusiunas, *The Galois correspondence theorem for groupoid actions*, J. Algebra 509 (2018), 105–123.

Galois Theory

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・ ・

A Galois correspondence for **global** actions was given in

• [PT] A. Paques, T. Tamusiunas, *The Galois correspondence theorem for groupoid actions*, J. Algebra 509 (2018), 105–123.

Next step: Galois correspondence for partial actions.

イロト イヨト イヨト イヨト

3

Let G be a finite groupoid and let $\alpha = (S_g, \alpha_g)_{g \in G}$ be a partial action of G on a commutative ring S. We will assume $S_g = S1_g$, where 1_g is a central idempotent of S, $1_g \neq 0$, for all $g \in G$.

・ロト ・四ト ・ヨト ・ヨト

Definition 3.1

The ring extension $R \subset S$ is called an α_G -partial Galois extension if

 $R = S^{\alpha_G} := \{s \in S : \alpha_g(s_{1_{g^{-1}}}) = s_{1_g}, \text{ for all } g \in G\}$ and there exist a positive integer m and elements $a_i, b_i \in S, 1 \le i \le m$, such that

$$\sum_{1 \le i \le m} a_i \alpha_g(b_i \mathbf{1}_{g^{-1}}) = \sum_{z \in G_0} \delta_{z,g} \mathbf{1}_z, \quad \text{for all } g \in G.$$
 (2)

The set $\{a_i, b_i\}_{1 \le i \le m}$ is called a partial Galois coordinate system of *S* over *R*.

ヘロア 人間 アメヨアメヨア

3

Proposition 3.2

Let $R = S^{\alpha_G}$ and $R_j = S_j^{\alpha_j}$, for each $1 \le j \le r$. Then $R \subset S$ is an α_G -partial Galois extension if and only if $R_j \subset S_j$ is an α_j -partial Galois extension, for all $1 \le j \le r$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition 3.3 The set

$$S^{\alpha_{\mathsf{G}}} := \{ a \in S : \alpha_g(a1_{g^{-1}}) = a1_g, \text{ for all } g \in \mathsf{G} \}$$

is called subring of invariant elements of S.

◆□ → ◆圖 → ◆臣 → ◆臣 → ○臣

Given a subring T of S, we will denote by G_T the set of elements of G which act trivially on T, that is,

$$\mathsf{G}_{\mathcal{T}} := \{ g \in \mathsf{G} : \alpha_g(t\mathbf{1}_{g^{-1}}) = t\mathbf{1}_g, \text{ for all } t \in \mathcal{T} \}.$$

Proposition 3.4 Let $T = S^{\alpha_H}$, $T_{y_j} = S_{y_j}^{\alpha_{H_j(y_j)}}$ for all j = 1, ..., r and $g \in G$. The following assertions are satisfied:

(i) G_T is a wide subgroupoid of G if and only if $G(y_j)_{T_{y_j}}$ is a subgroup of $G(y_j)$, for all $1 \le j \le r$,

(ii) $G_T = H$ if and only if $G(y_j)_{T_{y_j}} = H_j(y_j)$, for all $1 \le j \le r$.

・ロト ・四ト ・ヨト ・ヨト

We recall that a unital ring extension $R \subset T$ is called *separable* if the multiplication map $m : T \otimes_R T \to T$ is a splitting epimorphism of *T*-bimodules. This is equivalent to saying that there exists an element $e \in T \otimes_R T$ such that te = et, for all $t \in T$, and $m(e) = 1_T$. Such an element *e* is usually called *an idempotent of separability* of *T* over *R*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへで

Let

$\mathfrak{L}(G) = \{H : H \text{ is a subgroupoid of } G \text{ and } \alpha_H \text{ is group-type}\}$

Let

$$\mathfrak{L}(G) = \{H : H \text{ is a subgroupoid of } G \text{ and } \alpha_H \text{ is group-type}\}$$

and

$$\mathfrak{L}_{W}(\mathsf{G}) := \{ H \in \mathfrak{L}(\mathsf{G}) : H_{0} = \mathsf{G}_{0} \}.$$

イロト イヨト イヨト イヨト

Lemma 3.5 Let $H \in \mathfrak{L}_w(G)$, $T = S^{\alpha_H}$ and $R = S^{\alpha_G}$. For each $1 \le j \le r$, consider $T_{y_j} = S_{y_j}^{\alpha_{H_j(y_j)}}$ and $R_{y_j} = S_{y_j}^{\alpha_{G(y_j)}}$. Then the following statements are equivalent:

(i) $R \subset T$ is separable,

(ii) $R_{y_j} \subset T_{y_j}$ is separable, for all $1 \le j \le r$.

Definition 3.6

Let T be a subring of S and $T_y := T1_y$, for all $y \in G_0$.

- (i) The subring T_y of S_y will be called α_{G(y,z)}-strong if for any g, h ∈ G(y, z) such that g⁻¹h ∉ G(y)_{T_y} and for any non-zero idempotent e ∈ S_g ∪ S_h, there exists t_y ∈ T_y such that α_g(t_y1_{g⁻¹})e ≠ α_h(t_y1_{h⁻¹}).
- (ii) We shall say that T is α -strong if T_y is $\alpha_{G(y,z)}$ -strong for all $y, z \in G_0$.

< 日 > < 回 > < 回 > < 回 > < 回 > <

Proposition 3.7

Let $H \in \mathfrak{L}_w(G)$, $T = S^{\alpha_H}$ and $T_{y_j} = S^{\alpha_{H_j(y_j)}}_{y_j}$ for all $1 \le j \le r$. The following statements are equivalent:

(i) T is α -strong,

- (ii) for any $g, h \in G$ such that t(g) = t(h) and $g^{-1}h \notin G_T$ and for any non-zero idempotent $e \in S_g \cup S_h$, there exists $t \in T$ such that $\alpha_g(t_{1_{g^{-1}}})e \neq \alpha_h(t_{1_{h^{-1}}})e$,
- (iii) T_{y_j} is $\alpha_{G(y_j)}$ -strong for all $1 \le j \le r$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In the next two propositions we establish the Galois correspondence.

Proposition 3.8

Let S be an α_G -partial Galois extension of $R = S^{\alpha_G}$, $H \in \mathfrak{L}_w(G)$ and $T = S^{\alpha_H}$. Then

(i) T is R-separable and α -strong,

(ii) $G_T = H$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition 3.9

Let *S* be an α_G -partial Galois extension of $R := S^{\alpha_G}$, *T* an *R*-separable and α -strong subring of *S* such that $G_T = H$, where $H \in \mathfrak{L}_w(G)$. Then $S^{\alpha_H} = T$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $R = S^{\alpha_G}$ and denote by $\mathfrak{B}(S)$ the set of all subrings T of S which are R-separable, α -strong and such that $G_T = H$, for some $H \in \mathfrak{L}_w(G)$.

Let $R = S^{\alpha_G}$ and denote by $\mathfrak{B}(S)$ the set of all subrings T of S which are R-separable, α -strong and such that $G_T = H$, for some $H \in \mathfrak{L}_w(G)$.

Theorem 3.10

(Galois Correspondence) Let $\alpha_G = (S_g, \alpha_g)_{g \in G}$ be a unital group-type partial action of a finite groupoid G on a ring S such that $S_g = S1_g$ and $1_g \neq 0$, for all $g \in G$. If S is an α_G -partial Galois extension of S^{α_G} then there exists a bijective correspondence between $\mathfrak{L}_w(G)$ and $\mathfrak{B}(S)$ given by $H \mapsto S^{\alpha_H}$ whose inverse is given by $T \mapsto G_T$.

イロト イヨト イヨト イヨト

э

The problem of determining a Galois correspondence for partial groupoid actions (not necessarily of group-type) remains an open question.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

- D. Bagio, A. Paques, Partial groupoid actions: globalization, Morita theory and Galois theory, Comm. Algebra 40 (10) (2012), 3658–3678.
- D. Bagio, A. Paques and H. Pinedo, On partial skew groupoids rings, Internat. J. Algebra Comput. 31 (1) (2021), 1–17.
- D. Bagio, A. Sant'Ana, T. Tamusiunas, *Galois correspondence for group-type partial actions of groupoids*, arXiv:2108.01180v1, 2021.
- A. Paques, T. Tamusiunas, *The Galois correspondence theorem for groupoid actions*, J. Algebra 509 (2018), 105–123.