Ribbon Categories and RT Invariants

Igor Alarcon Blatt
Department of Mathematics - Universidade Federal Fluminense - Brazil

Abstract

It is well known that the category of finite dimensional representations of the quantum group $U_{q}\left(\mathfrak{s l}_{2}\right)$ carries the structure of a ribbon category. We present a computer program which computes the associated Reshetikhin-Turaev (RT) invariant of an inputted knot.

\section*{1. Introduction}

Our main goal is to present the construction of knot invariants from a quasi-triangular Hopf algebra, using the structures present in its category of finite dimensional representations. We'll present the basic definitions for these alge bras and, as we go along, introduce a pictorial technique for representing morphisms in these categories in a way that we can relate to knot diagrams

2. Hopf Algebras

An algebra over a field k can be viewed as a triple (A, μ, η) where A is a vector space over k and the product and the unit are expressed by the linear maps $\mu: A \otimes A \rightarrow A$ and $\eta: k \rightarrow A$. In this case, the associativity of the product can be expressed as the commutativity of the following diagram

Similarly, the unit axiom can be expressed in terms of a diagram (which we omit).
Now the definition of coalgebra is obtained by "reversing the arrows". Explicitly

Definition 1

A coalgebra over a field k is given by a triple (C, Δ, ε) where C is a vector space and $\Delta: C \rightarrow C \otimes C$ and $\varepsilon: A \rightarrow k$ are linear maps satisfying the following axoms:
(Coassoc): The following square commutes:

(Coun): The following diagram commutes:

$$
k \otimes C \underset{\kappa}{\underset{\sim}{r}} \underset{\sim}{\varepsilon \otimes i d} C \otimes C \xrightarrow[\sim]{\underset{\sim}{i d} \otimes \varepsilon} C \otimes k
$$

Definition 2

[3, Definition III.2.2], [3, Theorem III.2.1] A bialgebra is a quintuple $(H, \mu, \eta, \Delta, \varepsilon)$ where (H, μ, η) is an algebra and (H, Δ, ε) is a coalgebra verifying the following condition:

- The maps Δ and ε are morphisms of algebras.

Now we are able to define a Hopf algebra:

Definition 3

Let $(H, \mu, \eta, \Delta, \varepsilon)$ be a bialgebra. An endomorphism S of H is called an antipode for the bialgebra H if

$$
S \star \operatorname{id}_{H}=\operatorname{id}_{H} \star S=\eta \circ \varepsilon
$$

(where $f \star g=\mu \circ(f \otimes g) \circ \Delta$ is convolution). A Hopf algebra is a bialgebra with an antipode.

A nice thing about Hopf algebras is that their category of finite dimensional representations forms what is called a Rigid Monoidal Category.

Definition 4

Let \mathcal{C} be a monoidal category and V be an object in \mathcal{C}. A right dual to V is an object V^{*} with two morphisms
$e_{V}: V^{*} \otimes V \rightarrow \mathbf{1}$,
$i_{V}: \mathbf{1} \rightarrow V \otimes V^{*}$
satisfying some compatibility conditions called rigidity $a x$ ioms. Similarly, we can define a left dual object ${ }^{*} V$ with similar morphisms and axioms. A category \mathcal{C} is called rigid if every object in \mathcal{C} has right and left duals.

In our pictorial notation, the morphisms $\operatorname{id}_{V}, \mathrm{id}_{V^{*}}, e_{V}$ and i_{V} will be represented by

id_{V}	$\mathrm{id}_{V^{*}}$	e_{V}	i_{V}
\uparrow_{V}	$\downarrow^{V^{*}}$	$V^{*} \bigcap_{V}$	$V \bigcup^{V^{*}}$

3. Quantum Groups

Quantized enveloping algebras, or quantum groups, form a famous class of Hopf algebras. In a sense they are deformations of universal enveloping algebras of finite dimensional simple Lie algebras.
The finite dimensional irreducible representation V_{n} of $\mathfrak{s l}_{2}$ of dimension $n+1$ can be represented by the picture below, where the actions of E, F and H are given, respectively, by the arrows placed above, below, and the loops.

There is a corresponding representation V_{n} of $U_{q}\left(\mathfrak{s l}_{2}\right)$, given by the picture below, where the actions of E, F and q^{H} are given, respectively, by the arrows placed above, below, and the loops

Here

$$
[n]=\frac{q^{n}-q^{-n}}{q-q^{-1}}=q^{-n+1}+q^{-n+3}+\cdots+q^{n-3}+q^{n-1}
$$

The commutation relations among the operators $E, F, q^{H} \in$ $U_{q}\left(\mathfrak{s l}_{2}\right)$ reduce to those among the operators E, F, H in the limit $q \rightarrow 1$ (Serre relations, etc.). The formal definition of $U_{q}\left(\mathfrak{s l}_{2}\right)$ is given in terms of these deformed relations [2, ch. 6].
It turn
It turns out that $U_{q}\left(\mathfrak{s l}_{2}\right)$ (and $U_{q}(\mathfrak{g})$ in general) carries the structure of a Hopf algebra with, in particular

$$
\Delta(E)=E \otimes q^{H}+1 \otimes E, \quad \Delta(F)=F \otimes 1+q^{-H} \otimes F
$$

4. Quasitriangular Hopf Algebras and Ribbon categories

The algebras $U_{q}(\mathfrak{g})$ are more than just Hopf algebras, they are quasitriangular.

Definition 5

A Hopf algebra, H , is quasitriangular if there exists an invertible element R of $H \otimes H$ such that
$\cdot(T \circ \Delta)(x)=R \Delta(x) R^{-1}, \forall x \in H$,
$\cdot(\Delta \otimes 1)(R)=R_{13} R_{23}$,
$\cdot(1 \otimes \Delta)(R)=R_{13} R_{12}$,
where

- Δ is the comultiplication on H
- $T: H \otimes H \rightarrow H \otimes H$ is the linear map given by

$$
T(x \otimes y)=y \otimes x
$$

- $R_{12}=\phi_{12}(R)$, where $\phi_{12}: H \otimes H \rightarrow H \otimes H \otimes H$ is the algebra morphism determined by $\phi_{12}(a \otimes b)=a \otimes b \otimes 1$ and similarly for R_{13} and R_{23}.
R is called the R-matrix.
A great thing for us is that, for the Lie algebra $\mathfrak{g}=\mathfrak{s l}_{2}$, we have a nice formula for an R-matrix on $U_{q}(\mathfrak{g})$.

Theorem 6

[2, Proposition 6.4.8] For $\mathfrak{g}=\mathfrak{s l}_{2}$, and U and V representations,

$$
R=\sum_{n=0}^{\infty} \frac{q^{\frac{n(n+1)}{2}}\left(1-q^{-2}\right)^{n}}{[n]!} q^{\frac{1}{2} h \otimes h} e^{n} \otimes f^{n}
$$

is an R-matrix. Here $q^{h \otimes h}(u \otimes v)=q^{\lambda \mu} u \otimes v$ for $u \in U_{\lambda}$ and $v \in V_{\mu}$.

As a consequence of the existence of an R-matrix for H, its category \mathcal{C} of representations is braided, i.e., for any pair of objects V, W of \mathcal{C}, there are functorial isomorphisms $\sigma_{V W}: V \otimes W \rightarrow W \otimes V$. They are pictorially represented as follows:

The category of finite dimensional $U_{q}(\mathfrak{g})$-modules has one additional structure: it is a ribbon category.

Definition 7

A ribbon category is a rigid braided tensor category with functorial isomorphisms $\delta_{V}: V \xrightarrow{\sim} V^{* *}$ satisfying:

1. $\delta_{V \otimes W}=\delta_{V} \otimes \delta_{W}$
2. $\delta_{1}=\mathrm{id}$
3. $\delta_{V^{*}}=\left(\delta_{V}^{*}\right)^{-1}$

Here, δ_{V}^{*} is the image of δ_{V} by a isomorphism $\operatorname{Hom}(U, V) \cong \operatorname{Hom}\left(V^{*}, U^{*}\right)$, as seen in [1, Lemma 2.1.6].

By [1, ch. 2], in a ribbon category we can construct functorial isomorphisms $\psi_{V}: V^{* *} \rightarrow V$ in a way that $\theta_{V}=\psi_{V} \circ \delta_{V}$ satisfy some desired axioms called balancing axioms. The pictorial representation of θ_{V} is

Fixing an oriented knot diagram and an object V of a rib bon category \mathcal{C}, and using the pictures introduced above as building blocks, we can produce a morphism $1 \rightarrow 1$ in \mathcal{C}, as illustrated below in the case of the trefoil knot

For us \mathcal{C} is the category of representations of the quantum group $U_{q}(\mathfrak{g})$. Thus $1=k$ and the morphism $k \rightarrow k$ amounts to an element of k. If this number can be shown to be invariant under ambient isotopy, then it is a knot invariant. There is a problem. In most examples $\theta_{V} \neq \mathrm{id}_{V}$, while the braids corresponding to θ_{V} and id_{V} are obviously isotopic. The solution to this problem is replace the strands of the tangle by ribbons, which are homeomorphic images of rectangles in \mathbb{R}^{3}. So, proceeding as in [1, Chapter 2], we consider the strands introduced above as ribbons fac ing upwards, and θ_{V} is interpreted as a ribbon that twists around itself once. The key result is now:

Theorem 8

[1, Theorem 2.3.9] (Reshetikhin-Turaev) The morphism φ depends only on the isotopy class of the tangle $F(\varphi)$, i.e., if $F\left(\varphi_{1}\right)$ and $F\left(\varphi_{2}\right)$ are isotopic as ribbon tangles then $\varphi_{1}=\varphi_{2}$.
The assignment of a number to a knot or link as above, is called the Reshetikhin-Turaev (RT) invariant, colored by V.

5. A Python program

We wrote a program in Python implementing RT invariants for $U_{q}\left(\mathfrak{s l}_{2}\right)$. The basic input parameter is a positive integer n equal to the dimension of the irreducible $U_{q}\left(\mathfrak{s l}_{2}\right)$ representation used to label the strands of the knot diagram. Explicit matrix forms of operators E, q^{H}, F, and the R-matrix, are computed.
The knot diagram is introduced via a simple text interface. For example, $e_{V}: V^{*} \otimes V \rightarrow k$, corresponding to the diagram above, is represented by the string ' $<\mathrm{n}^{\prime}$
A sample input representing the trivial knot is as follows [['<u'], ['n>']]. The trefoil is input as [['n>'], ['I', 'n>', 'I'], ['R^^', 'RVV'], yields the invariant
(using the $U_{q}\left(\mathfrak{s l}_{2}\right)$-module V_{1} as label). It's known that the Jones polynomial of the trefoil is

$$
-Q^{-4}+Q^{-3}+Q^{-1}
$$

which we see coincides with the V_{1}-invariant above, up to a scalar factor, where $Q=q^{2}$. In general the Jones polynomial is more-or-less the invariant associated with $U_{q}\left(\mathfrak{s l}_{2}\right)$ and its representation V_{1}. The RT invariants associated with $U_{q}\left(s l_{2}\right)$ and representations V_{2}, V_{3}, V_{4} etc., are similarly related to the colored Jones polynomials.

Acknowledgments

This work was supported by a stipend from the Serrapilheira Institute (grant number Serra 1912-31433), and done under the guidance of Jethro W. Van Ekeren, my advisor in the Master program at UFF.

References

[1] B. Bakalov and A. Kirillov, Lectures on Tensor Categories and Modular Functors. American Mathematical Society, 1 edition, 2001
[2] V. Chari and A. Pressley. A GUIDE TO QUANTUM GROUPS. Cambridge Univer sity Press, Cambridge, 1995.
[3] C. Kassel. Quantum Groups. Springer, New York, NY, 1 edition, 1995.

