# **RIBBON CATEGORIES AND RT INVARIANTS**

# **Igor Alarcon Blatt**

Department of Mathematics – Universidade Federal Fluminense – Brazil

### Abstract

It is well known that the category of finite dimensional representations of the quantum group  $U_q(\mathfrak{sl}_2)$  carries the structure of a ribbon category. We present a computer program which computes the associated Reshetikhin-Turaev (RT) invariant of an inputted knot.

### **1. Introduction**

Our main goal is to present the construction of knot invariants from a quasi-triangular Hopf algebra, using the structures present in its category of finite dimensional representations. We'll present the basic definitions for these algebras and, as we go along, introduce a pictorial technique for representing morphisms in these categories in a way that we can relate to knot diagrams.



### 3. Quantum Groups

Quantized enveloping algebras, or quantum groups, form a famous class of Hopf algebras. In a sense they are deformations of universal enveloping algebras of finite dimensional simple Lie algebras.

The finite dimensional irreducible representation  $V_n$  of  $\mathfrak{sl}_2$  of dimension n + 1 can be represented by the picture below, where the actions of E, F and H are given, respectively, by the arrows placed above, below, and the loops.



#### **Definition 7**

A *ribbon category* is a rigid braided tensor category with functorial isomorphisms  $\delta_V : V \xrightarrow{\sim} V^{**}$  satisfying:

1. 
$$\delta_{V\otimes W} = \delta_V \otimes \delta_W$$
  
2.  $\delta_1 = \mathrm{id}$   
3.  $\delta_{V^*} = (\delta_V^*)^{-1}$ 

Here,  $\delta_V^*$  is the image of  $\delta_V$  by a isomorphism  $Hom(U, V) \cong Hom(V^*, U^*)$ , as seen in [1, Lemma 2.1.6].

By [1, ch. 2], in a ribbon category we can construct functorial isomorphisms  $\psi_V : V^{**} \rightarrow V$  in a way that  $\theta_V = \psi_V \circ \delta_V$  satisfy some desired axioms called *bal*ancing axioms. The pictorial representation of  $\theta_V$  is



# 2. Hopf Algebras

An algebra over a field k can be viewed as a triple  $(A, \mu, \eta)$ where A is a vector space over k and the product and the unit are expressed by the linear maps  $\mu : A \otimes A \rightarrow A$  and  $\eta: k \to A$ . In this case, the associativity of the product can be expressed as the commutativity of the following diagram:



Similarly, the unit axiom can be expressed in terms of a diagram (which we omit).

Now the definition of coalgebra is obtained by "reversing the arrows". Explicitly

#### **Definition 1**

A coalgebra over a field k is given by a triple  $(C, \Delta, \varepsilon)$ where C is a vector space and  $\Delta : C \rightarrow C \otimes C$  and  $\varepsilon: A \to k$  are linear maps satisfying the following axioms:

(Coassoc): The following square commutes:



There is a corresponding representation  $V_n$  of  $U_q(\mathfrak{sl}_2)$ , given by the picture below, where the actions of E, F and  $q^H$  are given, respectively, by the arrows placed above, below, and the loops.



 $[n] = \frac{q^n - q^{-n}}{q - q^{-1}} = q^{-n+1} + q^{-n+3} + \dots + q^{n-3} + q^{n-1}.$ 

The commutation relations among the operators  $E, F, q^H \in \mathbb{R}$  $U_q(\mathfrak{sl}_2)$  reduce to those among the operators E, F, H in the limit  $q \rightarrow 1$  (Serre relations, etc.). The formal definition of  $U_q(\mathfrak{sl}_2)$  is given in terms of these deformed relations [2, ch. 61.

It turns out that  $U_q(\mathfrak{sl}_2)$  (and  $U_q(\mathfrak{g})$  in general) carries the structure of a Hopf algebra with, in particular

 $\Delta(E) = E \otimes q^H + 1 \otimes E, \qquad \Delta(F) = F \otimes 1 + q^{-H} \otimes F.$ 

# 4. Quasitriangular Hopf Algebras and

Fixing an oriented knot diagram and an object V of a ribbon category C, and using the pictures introduced above as building blocks, we can produce a morphism  $1 \rightarrow 1$ in C, as illustrated below in the case of the trefoil knot



For us C is the category of representations of the quantum group  $U_q(\mathfrak{g})$ . Thus  $\mathbf{1} = k$  and the morphism  $k \to k$  amounts to an element of k. If this number can be shown to be invariant under ambient isotopy, then it is a knot invariant. There is a problem. In most examples  $\theta_V \neq id_V$ , while the braids corresponding to  $\theta_V$  and  $id_V$  are obviously isotopic. The solution to this problem is replace the strands of the tangle by *ribbons*, which are homeomorphic images of rectangles in  $\mathbb{R}^3$ . So, proceeding as in [1, Chapter 2], we consider the strands introduced above as ribbons facing upwards, and  $\theta_V$  is interpreted as a ribbon that twists around itself once. The key result is now:

#### **Theorem 8**

[1, Theorem 2.3.9] (Reshetikhin-Turaev) The morphism  $\varphi$  depends only on the isotopy class of the tangle  $F(\varphi)$ , i.e., if  $F(\varphi_1)$  and  $F(\varphi_2)$  are isotopic as ribbon tangles then  $\varphi_1 = \varphi_2.$ 

#### (Coun): The following diagram commutes:

 $k \otimes C \xleftarrow{\varepsilon \otimes \mathrm{id}} C \otimes C \xrightarrow{\mathrm{id} \otimes \varepsilon} C \otimes k$  $\begin{array}{c} \swarrow \\ \cong \end{array} \qquad \Delta \end{array} \begin{array}{c} \cong \\ \end{array} \end{array}$ 

#### **Definition 2**

[3, Definition III.2.2], [3, Theorem III.2.1] A bialgebra is a quintuple  $(H, \mu, \eta, \Delta, \varepsilon)$  where  $(H, \mu, \eta)$  is an algebra and  $(H, \Delta, \varepsilon)$  is a coalgebra verifying the following condition: • The maps  $\Delta$  and  $\varepsilon$  are morphisms of algebras.

Now we are able to define a Hopf algebra:

#### **Definition 3**

Let  $(H, \mu, \eta, \Delta, \varepsilon)$  be a bialgebra. An endomorphism *S* of H is called an antipode for the bialgebra H if

 $S \star \mathrm{id}_H = \mathrm{id}_H \star S = \eta \circ \varepsilon$ 

(where  $f \star g = \mu \circ (f \otimes g) \circ \Delta$  is convolution). A Hopf algebra is a bialgebra with an antipode.

A nice thing about Hopf algebras is that their category of finite dimensional representations forms what is called a **Rigid** Monoidal Category.

### **Ribbon categories**

The algebras  $U_q(\mathfrak{g})$  are more than just Hopf algebras, they are quasitriangular.

#### **Definition 5**

A Hopf algebra, H, is quasitriangular if there exists an invertible element R of  $H \otimes H$  such that •  $(T \circ \Delta)(x) = R\Delta(x)R^{-1}, \forall x \in H,$ •  $(\Delta \otimes 1)(R) = R_{13} R_{23}$ , •  $(1 \otimes \Delta)(R) = R_{13} R_{12}$ , where •  $\Delta$  is the comultiplication on H•  $T: H \otimes H \to H \otimes H$  is the linear map given by

 $T(x \otimes y) = y \otimes x$ 

•  $R_{12} = \phi_{12}(R)$ , where  $\phi_{12}: H \otimes H \to H \otimes H \otimes H$  is the algebra morphism determined by  $\phi_{12}(a \otimes b) = a \otimes b \otimes 1$ and similarly for  $R_{13}$  and  $R_{23}$ . R is called the R-matrix.

A great thing for us is that, for the Lie algebra  $\mathfrak{g} = \mathfrak{sl}_2$ , we have a nice formula for an *R*-matrix on  $U_q(\mathfrak{g})$ .

#### Theorem 6

[2, Proposition 6.4.8] For  $\mathfrak{g} = \mathfrak{sl}_2$ , and U and V representations,

The assignment of a number to a knot or link as above, is called the Reshetikhin-Turaev (RT) invariant, colored by V.

## 5. A Python program

We wrote a program in Python implementing RT invariants for  $U_q(\mathfrak{sl}_2)$ . The basic input parameter is a positive integer n equal to the dimension of the irreducible  $U_q(\mathfrak{sl}_2)$ representation used to label the strands of the knot diagram. Explicit matrix forms of operators  $E, q^H, F$ , and the *R*-matrix, are computed.

The knot diagram is introduced via a simple text interface. For example,  $e_V : V^* \otimes V \to k$ , corresponding to the diagram above, is represented by the string ' <n'.

A sample input representing the trivial knot is as follows [[' < u'], ['n > ']]. The trefoil is input as [['n>'], ['I', 'n>', 'I'], ['R^^', 'Rvv'], ['I', 'Rv^under', 'I'], ['<u', '<u']]. This yields the invariant

## $q^{9/2}(q^{-2}+q^{-6}-q^{-8})$

(using the  $U_q(\mathfrak{sl}_2)$ -module  $V_1$  as label). It's known that the Jones polynomial of the trefoil is

### $-Q^{-4} + Q^{-3} + Q^{-1},$

which we see coincides with the  $V_1$ -invariant above, up to a scalar factor, where  $Q = q^2$ . In general the Jones polynomial is more-or-less the invariant associated with  $U_q(\mathfrak{sl}_2)$ and its representation  $V_1$ . The RT invariants associated with  $U_q(sl_2)$  and representations  $V_2$ ,  $V_3$ ,  $V_4$  etc., are similarly related to the *colored Jones polynomials*.

#### Definition 4

Let C be a monoidal category and V be an object in C. A *right dual* to V is an object  $V^*$  with two morphisms

> $e_V: V^* \otimes V \to \mathbf{1},$  $i_V: \mathbf{1} \to V \otimes V^*$

satisfying some compatibility conditions called *rigidity axioms*. Similarly, we can define a *left dual* object \*V with similar morphisms and axioms. A category C is called *rigid* if every object in C has right and left duals.

In our pictorial notation, the morphisms  $id_V$ ,  $id_{V^*}$ ,  $e_V$  and  $i_V$ will be represented by



so that the rigidity conditions can be expressed by

 $R = \sum_{n=0}^{\infty} \frac{q^{\frac{n(n+1)}{2}}(1-q^{-2})^n}{[n]!} q^{\frac{1}{2}h \otimes h} e^n \otimes f^n$ 

is an *R*-matrix. Here  $q^{h\otimes h}(u\otimes v) = q^{\lambda\mu}u\otimes v$  for  $u\in U_{\lambda}$ and  $v \in V_{\mu}$ .

As a consequence of the existence of an R-matrix for H, its category C of representations is braided, i.e., for any pair of objects V, W of C, there are functorial isomorphisms  $\sigma_{VW}: V \otimes W \to W \otimes V$ . They are pictorially represented as follows:

The category of finite dimensional  $U_q(\mathfrak{g})$ -modules has one additional structure: it is a **ribbon category**.

### Acknowledgments

This work was supported by a stipend from the Serrapilheira Institute (grant number Serra 1912-31433), and done under the guidance of Jethro W. Van Ekeren, my advisor in the Master program at UFF.

### References

[1] B. Bakalov and A. Kirillov. Lectures on Tensor Categories and Modular Functors. American Mathematical Society, 1 edition, 2001.

[2] V. Chari and A. Pressley. A GUIDE TO QUANTUM GROUPS. Cambridge University Press, Cambridge, 1995.

[3] C. Kassel. Quantum Groups. Springer, New York, NY, 1 edition, 1995.

From Dynamics to Algebra and Representation Theory and back

Florianópolis–Brazil