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Abstract
Any action of a groupoid on a ring (not necessarily com-
mutative) gives rise to a natural map from the set of the
subgroupoids into the set of subrings, which we call the Ga-
lois map for groupoid actions. In this work we will introduce
some induced maps of the Galois map and study relations
between them. Furthermore, we give some conditions for
the Galois map for groupoid actions to be injective.

1. Introduction
Given a finite groupoid G and a unital ring R, any action of
G on R gives rise to a natural map from the set of the sub-
groupoids of G into the set of subrings of R, where each
subgroupoid is taken into the fixed part by its action. This
map is an inverting-inclusion map, in the sense that the sub-
ring Rβ of all the invariants of R by β is a subring of RβH, for
any subgroupoid H of G. Moreover, in the case that R is an
extension of Rβ, this map is called the Galois map. In this
work, we will denote it by θ : H 7→ RβH.
In the commutative context, there exists a bijective cor-
respondence between the wide subgroupoids of G and
the Rβ-subalgebras of R that are separable and β-strong
proved by Paques and Tamusiunas in Ref. [3].
For group actions but in the noncommutative context, Szeto
and Xue give some conditions in Ref. [5] for the Galois map
to be injective. The authors also define two maps induced
by θ and study relations between them.
In this work we shall extend the results of Ref. [5] to the
groupoid context. We introduce two maps induced by the
Galois map, σ : H 7→ θ(H)C(R) and γ : H 7→ VR(θ(H)), and
another two maps, induced by σ and γ, σ : H 7→ θ(H)C(R)
and γ : H 7→ VR(θ(H)). If R is a β-Galois extension of
Rβ such that Rβ is C(R)β-separable, we have that σ and γ
are injective, from the set {H | H is a subgroupoid of G} to
the set {T | T is C(R)-separable subalgebra of R}, where
C(R) is the center of R. Finally, we prove relations between
σ, γ and θ, and give some conditions for θ to be injective.

2. Definitions and notations
Groupoids are usually presented as small categories
whose morphisms are all invertible. However, in this work
will be adopted the algebraic definition of a groupoid, which
appears, for instance, in [3].
A groupoid is a nonempty set G, equipped with a partially
defined binary operation (which we will denote by concate-
nation) that satisfies the following conditions:
(i) for all g, h, l ∈ G, g(hl) exists if and only if (gh)l exists and

in this case they are equal;
(ii) for all g, h, l ∈ G, g(hl) exists if and only if gh and hl exist;
(iii) for each g ∈ G, there exist (unique) identities d(g), r(g) ∈

G such that gd(g) and r(g)g exist and gd(g) = g = r(g)g;
(iv) for each g ∈ G there exists g−1 ∈ G such that d(g) = g−1g

and r(g) = gg−1.
For all g, h ∈ G, we write ∃gh whenever the product gh
is defined. We will denote by G2 the subset of the pairs
(g, h) ∈ G × G such that d(g) = r(h). The elements d(g) and
r(g) are called domain and range of g, respectively.
An element e ∈ G is called an identity of G if e = d(g) =
r(g−1), for some g ∈ G. It will be denoted by G0 the set of
all identities of G and by Ge the set of all g ∈ G such that
d(g) = r(g) = e.
Given a groupoid G and a nonempty subset H of G, we say
that H is a subgroupoid of G if H equipped with the restric-
tion of the operation of G is a groupoid itself. We say that H
is wide if H0 = G0.
Consider R an algebra with 1 over a commutative ring A.
According to [1], an action of G over R is a pair

β = ({Eg}g∈G, {βg}g∈G)

where for each g ∈ G, Eg = Er(g) is an ideal of R and
βg : Eg−1 −→ Eg is an isomorphism of A-algebras satisfying
the following conditions:
(i) βe is the identity map IdEe

of Ee for all e ∈ G0;
(ii) βg(βh(r)) = βgh(r), for all (g, h) ∈ G2 and for all r ∈ Eh−1 =

E(gh)−1.
In this text we will consider actions of G on R such that each
Eg is a unital A-algebra. Denote by 1e the identity element
of Ee.
Let S be any subalgebra of R and β = ({Eg}g∈G, {βg}g∈G)
an action of a groupoid G on an algebra R. Consider the
set HS = {g ∈ G | βg(s1g−1) = s1g,∀s ∈ S}. From Lemma
2.1 [3], we know that HS is a subgroupoid of G.

3. Galois theory for groupoid actions
In this section we will present some results for the Galois
theory for groupoid actions which were introduced in the lit-
erature in Ref. [1, 3, 4].

The subalgebra of R of the elements which are invariant
under β we will denote by

Rβ = {r ∈ R | βg(r1g−1) = r1g ∀g ∈ G}.

We say that R is a β-Galois extension of Rβ if there exist
elements xi, yi ∈ R, 1 ≤ i ≤ n such that

∑n
i=1 xiβg(yi1g−1) =

δ1,g1e for all g ∈ G and e ∈ G0.
An A-algebra R is separable over A (or A-separable) if R
is a left projective R ⊗A Ro-module, which is equivalent to
say that there exists an element e =

∑n
i=1 xi⊗ yi ∈ R⊗ARo

such that
∑n

i=1 xiyi = 1and
∑n

i=1 rxi ⊗ yi =
∑n

i=1 xi ⊗ ryi
for all r ∈ R. Every R|Rβ Galois extension is Rβ-separable.
Let S be any subring of R. The set VR(S) = {r ∈ R | rs =
sr, for all s ∈ S} is a subring of R, called the commutator
of S in R. We also define Jg = {r ∈ Eg | rβg(x1g−1) =

xr, for allx ∈ R}, for g ∈ G. The J ′gs describe the com-
mutator of Rβ in R, which is shown in Lemma 2.
From now on, along all the text, A is a commutative ring, G
is a finite groupoid, β = ({Eg}g∈G, {βg}g∈G) an action of G
on R such that Eg is a unital A-algebra and R = ⊕e∈G0

Ee.
In this case, 1R =

∑
e∈G0

1e.

Proposition 1
[[4], Proposition 2.2] Let R be a β-Galois extension of
Rβ, H be a subgroupoid of G and RH = ⊕e∈H0

Ee. Then,
βH = {βh : Eh−1 −→ Eh |h ∈ H} is an action of H on RH
and RH is a βH-Galois extension of (RH)βH.

We say that R is a β-Galois algebra of Rβ if R is a β-Galois
extension of Rβ such that Rβ is contained in the center C(R)
of R, and R is called a central β-Galois algebra if R is a β-
Galois extension of its center C(R). In particular, R is an
Azumaya algebra if it is a separable extension of its center
([2].)

4. Induced Maps
By keeping definitions and notations given in Sections 2 and
3, in this section we assume that R is a β-Galois algebra of
Rβ such that Rβ is C(R)β-separable and we fix the notation
θ : H 7→ RβH for the Galois map from the set of the wide
subgroupoids of G into the set of the Rβ-subalgebras of R.
For a subgroupoid H of G, let SH={g∈H|Jg ̸={0}}, TH={g∈
H|Jg = {0}} and H= {L |L is a subgroupoid ofG and SL =
SH}. We define two maps induced by the Galois map:
σ : H 7→ θ(H)C(R) and γ : H 7→ VR(θ(H)).
For this, we will list and prove some results.

Lemma 2
[[4], Lemma 3.1] VR(Rβ) =

⊕
g∈G Jg.

Lemma 3
Let R be a β-Galois extension of Rβ such that Rβ is
C(R)β-separable. Then RβH is C(R)β-separable, for
each H subgroupoid of G such that G0 ⊆ H, where
βH = {βh : Eh−1 −→ Eh |h ∈ H} is an action of H over
RH =

⊕
e∈H0

Ee.

Lemma 4
Let R be a β-Galois extension of Rβ such that Rβ is
C(R)β-separable. Then, γ : H 7→ VR(θ(H)) for a sub-
groupoid H of G is well defined.

Lemma 5
Let R be a β-Galois extension of Rβ such that Rβ is
C(R)β-separable. Then, σ : H 7→ θ(H)C(R) for a sub-
groupoid H of G is well defined.

Lemma 6
Let R be a β-Galois extension of Rβ and ϕ : S −→⊕∑

g∈S Jg for S ⊆ SG. Then, ϕ is a injective map.

Theorem 7
Let R be a β-Galois extension of Rβ such that Rβ is
C(R)β-separable. Then, σ : H 7→ θ(H)C(R) and γ : H 7→
VR(θ(H)) are injective.

Proof. Let σ(H) = σ(L). Note that,

RβHC(R) = θ(H)C(R) = σ(H) = σ(L) = θ(L)C(R) = RβLC(R)

for subgroupoids H,L of G. Then, VR(R
βHC(R)) =

VR(R
βLC(R)). Moreover, VR(R

βH) = VR(R
βHC(R)) and

VR(R
βL) = VR(R

βLC(R)). Thus,

VR(R
βH) = VR(R

βHC(R)) = VR(R
βLC(R)) = VR(R

βL).

From Lemma 2,
⊕∑

h∈SH
Jh =

⊕∑
l∈SL

Jl and SH = SL
by Lemma 6. Therefore H = L and this implies that σ is
injective.
Now let γ(H) = γ(L). Then, VR(θ(H)) = VR(θ(L)). By
Lemma 2,⊕ ∑

h∈SH

Jh = VR(R
βH) = VR(θ(H)) = VR(θ(L))

= VR(R
βL) =

⊕ ∑
l∈SL

Jl.

From Lemma 6, SH = SL. Therefore H = L and this implies
that γ is injective.

5. Injectivity of the Galois map
Keeping the same notations given in Section 4, in this sec-
tion we give some conditions for a Galois maps θ : H −→
RβH to be injective. We begin with a relation between σ and
γ.

Lemma 8
σ : H 7→ θ(H)C(R) is injective if and only if γ : H 7→
VR(θ(H)) is injective.

Lemma 9
If σ : H 7→ θ(H)C(R) or γ : H 7→ VR(θ(H)) are injective,
then the Galois map θ : H 7→ RβH is injective.

Proof. We assume that σ is injective. Let H and L be sub-
groupoids of G such that θ(H) = θ(L). Thus,

RβH = RβL ⇒ RβHC(R) = RβLC(R) ⇒ σ(H) = σ(L).

Since σ is injective, then H = L. Therefore θ is injective
Now assuming that γ is injective, by Lemma 8, σ is injective.
Hence θ is injective.

Theorem 10
If H = {H}, for each H subgroupoid of G, then θ is injec-
tive.

Proof. Let H and L subgroupoids of G. Then,

RβH = RβL ⇒ RβHC(R) = RβLC(R).

From Lemma 5, σ(H) = σ(L). Since σ is injective by The-
orem 7, H = L. By hypothesis H = {H} and L = {L}, so
H = L. Therefore θ is injective.
Let H be a subset of G. The subgroupoid generated by the
elements in H is a small subgroupoid of G containing H,
which will be denoted by ⟨H⟩.

Theorem 11
Let ⟨SH⟩ be the subgroupoid of G generated by the ele-
ments in SH , for a subgroupoid H of G. If ⟨SH⟩ = H, then
θ is injective.

An immediate consequence of Theorem 11 is that if Jg ̸=
{0} for each g ∈ G, then θ is injective. In fact, since Jg ̸= {0}
for each g ∈ G, ⟨SH⟩ = SH = H for each subgroupoid H of
G. Hence θ is injective.

6. Conclusion
In Section 4 we showed that σ : H 7→ θ(H)C(R) and γ :
H 7→ VR(θ(H)) are a injective correspondence from the
set {H |H is a subgroupoid ofG} to the set of the C(R)-
separable subalgebras of R.
The Theorems 9 and 10 give sufficient conditions for that θ
to be injective. Furthermore, the Theorem 10 holds for any
β-Galois extension of R which is not necessarily a separa-
ble algebra over C(R)β and this theorem generalizes Theo-
rem 3.3 in [4].

Acknowledgments
This study was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior – Brasil
(CAPES).

References
[1] D. Bagio and A. Paques. Partial groupoid actions: Globalization, morita theory and

galois theory. Communications in Algebra, 40:3658–3678, 2012.

[2] F. DeMeyer and E. Ingraham. Separable Algebras Over Commutative Rings. Lec-
ture Notes in Mathematics. Springer, Berlin, Heidelberg, 1971.

[3] A. Paques and T. Tamusiunas. The Galois correspondence theorem for groupoid
actions. Journal of Algebra, 509:105–123, 2018.

[4] A. Paques and T. Tamusiunas. On the galois map for groupoid actions. Communi-
cations in Algebra, 49:1037–1047, 2020.

[5] G. Szeto and L. Xue. The galois map and its induced maps. Contemporary Ring
Theory 2011, 10-15, 2012.

From Dynamics to Algebra and Representation Theory and back Florianópolis–Brazil Feb. 2022


