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Crossed G -modules

G and N groups.

Definition 1.1 (Whitehead [7] and Maclane [5])

A crossed G -module structure on N is an action of G on N together with
a homomorphism β : N → G such that

1 β(n)n′ = nn′n−1 for all n, n′ ∈ N;

2 β(gn) = gβ(n)g−1 for all g ∈ G and n ∈ N.

Then N (with the G -action and β) is called a crossed G -module.

Mykola Khrypchenko (UFSC) Crossed modules and H3(S, A) CIMPA Floripa, UFSC 2022 5 / 53



Examples of crossed G -modules

The classical examples are the following.

Example 1.2

1 Usual G -modules (N is abelian and β is trivial);

2 Normal subgroups of G (N E G , G acts by conjugation and β is the
inclusion map);

3 G = AutN and β(n) is the conjugation by n.
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The corresponding 4-term exact sequence

N is a crossed G -module.

Remark 1.3

It follows from Definition 1.1 (2) that β(N) E G .

Definition 1.4

We define A = ker β and H = G/β(N), so that the sequence

A ↪→ N
β−→ G � H

is exact.
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The induced H-module structure

N is a crossed G -module;

A = ker β;

H = G/β(N).

Remark 1.5

It follows from Definition 1.1 (1) that A ⊆ C (N), in particular, A is
abelian. Moreover, by Definition 1.1 (2) we have gA = A for all g ∈ G , so
G acts on A, and β(N) E G acts trivially on A by Definition 1.1 (1).

Corollary 1.6

The abelian group A is a usual H-module under the induced action.
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Equivalent sequences and H3(G ,A)

A is an abelian group;

H is a group.

Definition 1.7

One defines equivalence of such 4-term exact sequences

A
i−→ N

β−→ G
π−→ H and A

i ′−→ N ′
β′−→ G ′

π′−→ H (I am not giving a precise
definition here, since it will appear later in a more general context).

Theorem 1.8

There is a one-to-one correspondence between the equivalence classes of
such exact sequences and the elements of H3(H,A).
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The easy part

Proposition 1.9

Given A
i−→ N

β−→ G
π−→ H, a choice of transversal of π determines a

cocycle c ∈ Z 3(H,A) up to a coboundary. Equivalent sequences induce
the same element of H3(H,A).
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The difficult part

A is an H-module;

c ∈ Z 3(H,A).

Definition 1.10

Let G be the free group over [H] := {[h] | h ∈ H} and ϕ : G → H the
homomorphism sending [h] to h. Denote R = kerϕ and N = A× R.

Proposition 1.11

The group R is freely generated by [h][k][hk]−1, h, k ∈ H.

Mykola Khrypchenko (UFSC) Crossed modules and H3(S, A) CIMPA Floripa, UFSC 2022 12 / 53



The difficult part

Definition 1.12

Let r(h, k) := [h][k][hk]−1 for h, k ∈ H \ {1H}, and r(h, k) := 1G
otherwise.

Definition 1.13

Define a map [H]→ Aut (N) by [x ](a, 1G ) = (xa, 1G ) and
[x ](1A, r(y , z)) = (c(x , y , z), r(x , y)r(xy , z)r(x , yz)−1), where the action
of x on a comes from the H-module structure on A. It extends to a
homomorphism G → Aut (N).
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The difficult part

Proposition 1.14

The map G → Aut (N) together with β : N → G, β(a, b) = b, is a
crossed G-module structure on N.

Proposition 1.15

Cohomologous c , c ′ ∈ Z 3(H,A) induce equivalent A
i−→ N

β−→ G
π−→ H and

A
i ′−→ N ′

β′−→ G ′
π−→ H.
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S-modules

S an inverse semigroup;

A a semilattice of abelian groups (i.e. a commutative inverse
semigroup);

Definition 1.16 (Lausch [4])

An S-module structure on A is a pair (α, λ), where α is an isomorphism
E (S)→ E (A) and λ is a homomorphism S → End(A) such that

1 λe(a) = α(e)a, for all e ∈ E (S), a ∈ A;

2 λs(α(e)) = α(ses−1), for all s ∈ S , e ∈ E (S).
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The groups C n(S1,A1)

A an S-module.

Definition 1.17

Denote by Cn(S1,A1) the abelian group of functions{
f : Sn → A | f (s1, . . . , sn) ∈ Aα(s1...sns

−1
n ...s−1

1 )

}
under the coordinate-wise multiplication
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The cochain complex C n(S1,A1)

Proposition 1.18

The groups Cn(S1,A1) form a cochain complex

C 1(S1,A1)
δ1

→ . . .
δn−1

→ Cn(S1,A1)
δn→ . . .

under the coboundary homomorphism δn : Cn(S1,A1)→ Cn+1(S1,A1)
mapping f ∈ Cn(S1,A1) to δnf ∈ Cn+1(S1,A1), where

(δnf )(s1, . . . , sn+1) = λs1(f (s2, . . . , sn+1))
n∏

i=1

f (s1, . . . , si si+1, . . . , sn+1)(−1)i

f (s1, . . . , sn)(−1)n+1
.
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The groups Hn(S1,A1)

Definition 1.19

Denote ker δn by Zn(S1,A1), im δn−1 by Bn(S1,A1) and
Zn(S1,A1)/Bn(S1,A1) by Hn(S1,A1). The elements of Cn(S1,A1),
Zn(S1,A1), Bn(S1,A1) and Hn(S1,A1) will be called n-cochains,
n-cocycles, n-coboundaries and n-cohomologies of S with values in A,
respectively.

Proposition 1.20 (Dokuchaev and Khrypchenko [2])

The group Hn(S1,A1) is isomorphic to the Lausch cohomology group
Hn(S ,A) for all n ≥ 2.
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The groups C n
≤(S1,A1)

f ∈ Cn(S1,A1).

Definition 1.21

The n-cochain f ∈ Cn(S1,A1) is said to be order-preserving, if

s1 ≤ t1, . . . , sn ≤ tn ⇒ f (s1, . . . , sn) ≤ f (t1, . . . , tn).

Such n-cochains form a subgroup of Cn(S1,A1), denoted by Cn
≤(S1,A1).
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The groups Hn
≤(S1,A1)

Remark 1.22

Since δn
(
Cn
≤(S1,A1)

)
⊆ Cn+1

≤ (S1,A1), we obtain the cochain complex

C 1
≤(S1,A1)

δ1

→ . . .
δn−1

→ Cn
≤(S1,A1)

δn→ . . .

Definition 1.23

One naturally defines the groups of order-preserving n-cocycles
Zn
≤(S1,A1), n-coboundaries Bn

≤(S1,A1) and n-cohomologies Hn
≤(S1,A1)

of S with values in A.
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Crossed modules over inverse semigroups and the third
inverse semigroup cohomology group
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Relatively invertible endomorphisms of A

A a semilattice of groups.

Definition 2.1

An endomorphism ϕ : A→ A is called relatively invertible if there exist
ϕ̄ ∈ End(A) and eϕ ∈ E (A) satisfying:

1 ϕ̄ ◦ ϕ(a) = eϕa and ϕ ◦ ϕ̄(a) = ϕ(eϕ)a, for any a ∈ A;

2 eϕ is the identity of ϕ̄(A) and ϕ(eϕ) is the identity of ϕ(A).

The set of relatively invertible endomorphisms of A is denoted by end(A).

Proposition 2.2 (Proposition 3.4 from [1])

The set end(A) is an inverse subsemigroup of End(A) isomorphic to
Iui (A), the semigroup of isomorphisms between principal ideals of A.
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Crossed S-modules

S an inverse semigroup;

N a semilattice of groups.

Definition 2.3 (Dokuchaev, Khrypchenko, Makuta [3])

A crossed S-module structure on N is a triple (α, λ, β), where α is an
isomorphism E (S)→ E (N), λ is a homomorphism S → end(N) and β is
an idempotent-separating homomorphism N → S such that β|E(N) = α−1

and

1 λe(n) = α(e)n, for all e ∈ E (S), n ∈ N;

2 λs(α(e)) = α(ses−1), for all s ∈ S , e ∈ E (S);

3 λβ(n)(n′) = nn′n−1, for all n, n′ ∈ N;

4 β(λs(n)) = sβ(n)s−1, for all s ∈ S , n ∈ N.
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The inverse semigroups A and T

N a crossed S-module.

Proposition 2.4

The semigroup A := β−1(E (S)) is a semilattice of (abelian) groups
contained in C (N).

Proposition 2.5

The collection B = {β(Ne)}e∈E(N) is a group kernel normal system in S.

Moreover, if T := S/ρB and π := ρ\B : S → T, then π is
idempotent-separating and π−1(E (T )) = β(N).
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Crossed module extensions of A by T

A a semilattice of abelian groups;

T an inverse semigroup.

Definition 2.6

A crossed module extension of A by T is a 4-term sequence

A
i−→ N

β−→ S
π−→ T ,

where

1 N is a crossed S-module and β is the corresponding crossed module
homomorphism;

2 i is a monomorphism and π is an idempotent-separating epimorphism;

3 i(A) = β−1(E (S)) and β(N) = π−1(E (T )).
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Equivalent crossed module extensions of A by T

Definition 2.7

By the equivalence of crossed module extensions of A by T we mean the

smallest equivalence relation identifying A
i−→ N

β−→ S
π−→ T and

A
i ′−→ N ′

β′−→ S ′
π′−→ T , such that there are homomorphisms ϕ1 : N → N ′

and ϕ2 : S → S ′

1 making the following diagram commute

A N S T

A N ′ S ′ T

i β

ϕ1

π

ϕ2

i ′ β′ π′

2 satisfying ϕ1 ◦ λs = λ′ϕ2(s) ◦ ϕ1 for all s ∈ S .
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The induced T -module structure on A

Proposition 2.8

Any crossed module extension of A by T induces a T-module structure on
A. Moreover, equivalent crossed module extensions of A by T induce the
same T-module structure on A.

Definition 2.9

A crossed module extension of a T -module A by T is a crossed module
extension of A by T which induces the given T -module structure on A.
Denote by E(T ,A) the set of equivalence classes of crossed module
extensions of a T -module A by T .
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Transversals that respect idempotents

ϕ : S → T a homomorphism of inverse semigroups.

Definition 2.10

A map ρ : ϕ(S)→ S such that ϕ ◦ ρ = idϕ(S) will be called a transversal
of ϕ. We say that ρ respects idempotents if ρ(E (ϕ(S))) ⊆ E (S).

Remark 2.11

Since E (ϕ(S)) = ϕ(E (S)), one may always choose a transversal ρ of ϕ
which respects idempotents.
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The induced cocycle

A
i−→ N

β−→ S
π−→ T a crossed module extension of A by T .

Lemma 2.12

The crossed module extension determines an element c ∈ C 3(T 1,A1).

1 Choose a transversal ρ of π.

2 There exists a unique f : T 2 → β(N) such that
f (x , y) ∈ β(N)ρ(xy)ρ(xy)−1 and ρ(x)ρ(y) = f (x , y)ρ(xy).

3 Choose F : T 2 → N such that β(F (x , y)) = f (x , y), where
F (x , y) ∈ Nα(ρ(xy)ρ(xy)−1).

4 There exists a unique c : T 3 → A such that
λρ(x)(F (y , z))F (x , yz) = i(c(x , y , z))F (x , y)F (xy , z), where
c(x , y , z) ∈ Ai−1◦α(ρ(xyz)ρ(xyz)−1).
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The induced cohomology

Lemma 2.13

The cochain c is a cocycle from Z 3(T 1,A1).

Lemma 2.14

Another choices of ρ and F lead to a cocycle cohomologous to c.

Lemma 2.15

Equivalent extensions induce cohomologous cocycles.

Proposition 2.16

There is a well-defined function from E(T ,A) to H3(T 1,A1).
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Order-preserving transversals

ρ : ϕ(S)→ S a transversal of ϕ : S → T .

Definition 2.17

We say that ρ is order-preserving whenever x ≤ y ⇒ ρ(x) ≤ ρ(y) for all
x , y ∈ ϕ(S).

Remark 2.18

The following statements are equivalent:

1 ρ is order-preserving and respects idempotents;

2 ρ(ex) = ρ(e)ρ(x) for all e ∈ E (ϕ(S)) and x ∈ ϕ(S);

3 ρ(xe) = ρ(x)ρ(e) for all e ∈ E (ϕ(S)) and x ∈ ϕ(S).
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Admissible crossed module extensions

A
i−→ N

β−→ S
π−→ T a crossed module extension of A by T .

Definition 2.19

The crossed module extension of A by T will be called admissible if β and
π possess order-preserving transversals which respect idempotents. The
set of equivalence classes of admissible crossed module extensions of A by
T will be denoted by E≤(T ,A).

Corollary 2.20

There is a well-defined function from E≤(T ,A) to H3
≤(T 1,A1).
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E -unitary covers

T an inverse semigroup;

G a group.

Definition 2.21 (McAlister-Reilly [6])

An E -unitary cover of T through G is an E -unitary inverse semigroup S ,
such that

1 the maximum group image of S is isomorphic to G ;

2 there is an idempotent-separating epimorphism π : S → T .

Proposition 2.22 (McAlister-Reilly [6])

Each inverse semigroup admits an E-unitary cover.
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The E -unitary cover through a free group

T an inverse semigroup;

identify T with {[t] | t ∈ T} and let T−1 := {[t]−1 | t ∈ T};
ϕ : F (T t T−1)→ T the epimorphism of semigroups such that
ϕ([t]) = t and ϕ([t]−1) = t−1;

ψ : F (T t T−1)→ FG (T ) the epimorphism of semigroups such that
ψ([t]) = [t] and ψ([t]−1) = [t]−1;

Φ : T → 2FG(T ), where Φ(t) = ψ(ϕ−1(t)).

Proposition 2.23 (McAlister-Reilly [6])

The semigroup S := Π(T ,FG (T ),Φ) is an E-unitary cover of T through
FG (T ), where Π(T ,FG (T ),Φ) = {(t,w) ∈ T × FG (T ) | w ∈ Φ(t)}.
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Irreducible words

w ∈ F (T t T−1).

Definition 2.24

The word w is irreducible if it has no subwords of the form uu−1, where
u ∈ F (T t T−1).

Remark 2.25

Each w ∈ FG (T ) \ {ε} admits a unique representation as a non-empty
irreducible word irr (w) over T t T−1. Hence, there is a well-defined map
irr : FG (T ) \ {ε} → F (T t T−1).
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Equivalent representation of S

Definition 2.26

Define ν : FG (T )→ T 1, where T 1 = T t {1}, by

ν(w) =

{
ϕ(irr (w)), w 6= ε,

1, w = ε.

Proposition 2.27

We have S = {(t,w) ∈ T × FG (T ) | t ≤ ν(w)} and
E (S) = {(e, ε) | e ∈ E (T )} = E (T )× {ε}.

Remark 2.28

If T is a group and (t,w) ∈ S , then (t,w) = (ν(w),w), so S ∼= FG (T ).
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The semigroup N

π : S → T the covering epimorphism, π(t,w) = t;

K := π−1(E (T )).

Remark 2.29

K is a semilattice of groups Ke = {(e,w) ∈ E (T )× FG (T ) | e ≤ ν(w)}.

N :=
⊔

e∈E(T )(Ae × Ke) with coordinatewise multiplication.

Remark 2.30

If one writes the elements of N as triples (a, e,w), then
N = {(a, e,w) ∈ A× E (T )× FG (T ) | a ∈ Ae and e ≤ ν(w)}.
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The homomorphisms i , α and β

(θ, η) a T -module structure on A;

i : A→ N, i(a) = (a, θ−1(aa−1), ε);

α : E (S)→ E (N), α(e, ε) = (θ(e), e, ε);

β : N → S , β(a, e,w) = (e,w).

Proposition 2.31

Given c ∈ Z 3
≤(T 1,A1), there exists a homomorphism λ : S → endN, such

that (α, λ, β) is a crossed S-module structure on N and the sequence

A
i−→ N

β−→ S
π−→ T is a crossed module extension of the T-module A by T .
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The construction of λ

s = (t, u) ∈ S ;

n = (a, e,w) ∈ N.

λs(n) =

{
(ζt(w)ηt(a), tet−1, uwu−1), u 6= ε,

α(s)n, u = ε,

where

ζt(w) =

{
ξt(irr (w)), w 6= ε,

θ(tt−1), w = ε.
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The construction of ξt : F (T t T−1)→ A

c ∈ Z 3
≤(T 1,A1) strongly normalized;

t ∈ T ;

w ∈ F (T t T−1).

If w = [x ]−1u for some x ∈ T and u ∈ F (T t T−1)1, then

ξt(w) := c(t, x−1, x)−1ξt([x−1]u).

We now proceed by induction on l(w) (the length of w).
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The construction of ξt : F (T t T−1)→ A

Base of induction. If w = [x ] for some x ∈ T , then

ξt(w) := θ(txx−1t−1).

Inductive step. l(w) > 1 and w = [x ]u for some x ∈ T and
u ∈ F (T t T−1).
Case 1. If w = [x ][y ]v for some x , y ∈ T and v ∈ F (T t T−1)1, then

ξt(w) := c(t, x , y)ξt([xy ]v).

Case 2. If w = [x ][y ]−1v for some x , y ∈ T and v ∈ F (T t T−1)1, then

ξt(w) := c(t, xy−1, y)−1ξt([xy−1]v).
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From H3
≤(T 1,A1) to E(T ,A)

c , c ′ ∈ Z 3
≤(T 1,A1) cohomologous;

A
i−→ N

β−→ S
π−→ T and A

i ′−→ N ′
β′−→ S ′

π′−→ T the corresponding
crossed module extensions of A by T .

Proposition 2.32

The crossed module extensions A
i−→ N

β−→ S
π−→ T and

A
i ′−→ N ′

β′−→ S ′
π′−→ T are equivalent.

Proposition 2.33

There is a map from H3
≤(T 1,A1) to E(T ,A).
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From H3
≤(T 1,A1) to E≤(T ,A)

T an F -inverse monoid.

Lemma 2.34

The crossed module extension A
i−→ N

β−→ S
π−→ T is admissible.

Corollary 2.35

There is a map from H3
≤(T 1,A1) to E≤(T ,A).

Theorem 2.36 (Dokuchaev, Khrypchenko, Makuta [3])

There is a bijective correspondence between H3
≤(T 1,A1) and E≤(T ,A).
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THANK YOU!
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