Crossed modules over inverse semigroups, crossed module extensions and their cohomological interpretation

Mykola Khrypchenko (joint work with Mikhailo Dokuchaev and Mayumi Makuta)

Universidade Federal de Santa Catarina

CIMPA Research School "From Dynamics to Algebra and Representation Theory and back"

Contents

Introduction

- Crossed modules over groups and the corresponding extensions
- The idea of the proof
- Modules over inverse semigroups and inverse semigroup cohomology
- 2 Crossed modules over inverse semigroups and the third inverse semigroup cohomology group
 - Crossed S-modules
 - Crossed module extensions
 - From crossed module extensions of A by T to $H^3(T^1, A^1)$
 - From admissible crossed module extensions of A by T to $H^3_{<}(T^1, A^1)$
 - From $H^3_{\leq}(T^1, A^1)$ to crossed module extensions of A by T

Introduction

æ

Outline

• Crossed modules over groups and the corresponding extensions

- The idea of the proof
- Modules over inverse semigroups and inverse semigroup cohomology

Crossed modules over inverse semigroups and the third inverse semigroup cohomology group

- Crossed S-modules
- Crossed module extensions
- From crossed module extensions of A by T to $H^3(T^1, A^1)$
- From admissible crossed module extensions of A by T to $H^3_{\leq}(T^1, A^1)$
- From $H^3_{<}(T^1, A^1)$ to crossed module extensions of A by T

• G and N groups.

Definition 1.1 (Whitehead [7] and Maclane [5])

A crossed *G*-module structure on *N* is an action of *G* on *N* together with a homomorphism $\beta: N \to G$ such that

$$\ \, {} \ \, {} \ \, {} \beta(n)n'=nn'n^{-1} \ \, {\rm for \ \, all } \ n,n'\in N;$$

$$\ \ \, {} { \ \, { \ \, } { \ \, } } \beta(gn)=g\beta(n)g^{-1} \ \, { \mbox{for all } } g\in G \ \, { \mbox{and } } n\in N.$$

Then N (with the G-action and β) is called a crossed G-module.

The classical examples are the following.

Example 1.2

- **1** Usual *G*-modules (*N* is abelian and β is trivial);
- ② Normal subgroups of *G* (*N* ≤ *G*, *G* acts by conjugation and β is the inclusion map);
- $G = \operatorname{Aut} N$ and $\beta(n)$ is the conjugation by n.

• N is a crossed G-module.

Remark 1.3

It follows from Definition 1.1 (2) that $\beta(N) \trianglelefteq G$.

Definition 1.4

We define $A = \ker \beta$ and $H = G/\beta(N)$, so that the sequence

$$A \hookrightarrow N \xrightarrow{\beta} G \twoheadrightarrow H$$

is exact.

- N is a crossed G-module;
- $A = \ker \beta$;
- $H = G/\beta(N)$.

Remark 1.5

It follows from Definition 1.1 (1) that $A \subseteq C(N)$, in particular, A is abelian. Moreover, by Definition 1.1 (2) we have gA = A for all $g \in G$, so G acts on A, and $\beta(N) \leq G$ acts trivially on A by Definition 1.1 (1).

Corollary 1.6

The abelian group A is a usual H-module under the induced action.

- A is an abelian group;
- *H* is a group.

Definition 1.7

One defines equivalence of such 4-term exact sequences $A \xrightarrow{i} N \xrightarrow{\beta} G \xrightarrow{\pi} H$ and $A \xrightarrow{i'} N' \xrightarrow{\beta'} G' \xrightarrow{\pi'} H$ (I am not giving a precise definition here, since it will appear later in a more general context).

Theorem 1.8

There is a one-to-one correspondence between the equivalence classes of such exact sequences and the elements of $H^3(H, A)$.

Outline

Introduction

• Crossed modules over groups and the corresponding extensions

The idea of the proof

• Modules over inverse semigroups and inverse semigroup cohomology

Crossed modules over inverse semigroups and the third inverse semigroup cohomology group

- Crossed S-modules
- Crossed module extensions
- From crossed module extensions of A by T to $H^3(T^1, A^1)$
- From admissible crossed module extensions of A by T to $H^3_{\leq}(T^1, A^1)$
- From $H^3_{<}(T^1, A^1)$ to crossed module extensions of A by T

Proposition 1.9

Given $A \xrightarrow{i} N \xrightarrow{\beta} G \xrightarrow{\pi} H$, a choice of transversal of π determines a cocycle $c \in Z^3(H, A)$ up to a coboundary. Equivalent sequences induce the same element of $H^3(H, A)$.

- A is an H-module;
- $c \in Z^3(H, A)$.

Definition 1.10

Let G be the free group over $[H] := \{[h] \mid h \in H\}$ and $\varphi : G \to H$ the homomorphism sending [h] to h. Denote $R = \ker \varphi$ and $N = A \times R$.

Proposition 1.11

The group R is freely generated by $[h][k][hk]^{-1}$, $h, k \in H$.

Definition 1.12

Let $r(h, k) := [h][k][hk]^{-1}$ for $h, k \in H \setminus \{1_H\}$, and $r(h, k) := 1_G$ otherwise.

Definition 1.13

Define a map $[H] \to \operatorname{Aut}(N)$ by $[x](a, 1_G) = (xa, 1_G)$ and $[x](1_A, r(y, z)) = (c(x, y, z), r(x, y)r(xy, z)r(x, yz)^{-1})$, where the action of x on a comes from the *H*-module structure on *A*. It extends to a homomorphism $G \to \operatorname{Aut}(N)$.

Proposition 1.14

The map $G \to Aut(N)$ together with $\beta : N \to G$, $\beta(a, b) = b$, is a crossed G-module structure on N.

Proposition 1.15

Cohomologous $c, c' \in Z^3(H, A)$ induce equivalent $A \xrightarrow{i} N \xrightarrow{\beta} G \xrightarrow{\pi} H$ and $A \xrightarrow{i'} N' \xrightarrow{\beta'} G' \xrightarrow{\pi} H$.

Outline

- Crossed modules over groups and the corresponding extensions
- The idea of the proof
- Modules over inverse semigroups and inverse semigroup cohomology
- Crossed modules over inverse semigroups and the third inverse semigroup cohomology group
 - Crossed S-modules
 - Crossed module extensions
 - From crossed module extensions of A by T to $H^3(T^1, A^1)$
 - From admissible crossed module extensions of A by T to $H^3_{\leq}(T^1, A^1)$
 - From $H^3_{<}(T^1, A^1)$ to crossed module extensions of A by T

- S an inverse semigroup;
- A a semilattice of abelian groups (i.e. a commutative inverse semigroup);

Definition 1.16 (Lausch [4])

An S-module structure on A is a pair (α, λ) , where α is an isomorphism $E(S) \rightarrow E(A)$ and λ is a homomorphism $S \rightarrow \text{End}(A)$ such that

$$\ \, {\bf 0} \ \, \lambda_e(a)=\alpha(e)a, \ \, {\rm for \ \, all \ } e\in E(S), \ a\in A;$$

2 $\lambda_s(\alpha(e)) = \alpha(ses^{-1})$, for all $s \in S$, $e \in E(S)$.

• A an S-module.

Definition 1.17

Denote by $C^n(S^1, A^1)$ the abelian group of functions

$$\left\{f:S^n\to A\mid f(s_1,\ldots,s_n)\in A_{\alpha(s_1\ldots s_ns_n^{-1}\ldots s_1^{-1})}\right\}$$

under the coordinate-wise multiplication

Proposition 1.18

The groups $C^n(S^1, A^1)$ form a cochain complex

$$C^1(S^1, A^1) \stackrel{\delta^1}{\rightarrow} \dots \stackrel{\delta^{n-1}}{\rightarrow} C^n(S^1, A^1) \stackrel{\delta^n}{\rightarrow} \dots$$

under the coboundary homomorphism $\delta^n : C^n(S^1, A^1) \to C^{n+1}(S^1, A^1)$ mapping $f \in C^n(S^1, A^1)$ to $\delta^n f \in C^{n+1}(S^1, A^1)$, where

$$(\delta^n f)(s_1, \dots, s_{n+1}) = \lambda_{s_1}(f(s_2, \dots, s_{n+1}))$$

 $\prod_{i=1}^n f(s_1, \dots, s_i s_{i+1}, \dots, s_{n+1})^{(-1)^i}$
 $f(s_1, \dots, s_n)^{(-1)^{n+1}}.$

Definition 1.19

Denote ker δ^n by $Z^n(S^1, A^1)$, im δ^{n-1} by $B^n(S^1, A^1)$ and $Z^n(S^1, A^1)/B^n(S^1, A^1)$ by $H^n(S^1, A^1)$. The elements of $C^n(S^1, A^1)$, $Z^n(S^1, A^1)$, $B^n(S^1, A^1)$ and $H^n(S^1, A^1)$ will be called *n*-cochains, *n*-cocycles, *n*-coboundaries and *n*-cohomologies of *S* with values in *A*, respectively.

Proposition 1.20 (Dokuchaev and Khrypchenko [2])

The group $H^n(S^1, A^1)$ is isomorphic to the Lausch cohomology group $H^n(S, A)$ for all $n \ge 2$.

•
$$f \in C^n(S^1, A^1)$$
.

Definition 1.21

The *n*-cochain $f \in C^n(S^1, A^1)$ is said to be order-preserving, if

$$s_1 \leq t_1, \ldots, s_n \leq t_n \Rightarrow f(s_1, \ldots, s_n) \leq f(t_1, \ldots, t_n).$$

Such *n*-cochains form a subgroup of $C^n(S^1, A^1)$, denoted by $C^n_{\leq}(S^1, A^1)$.

Remark 1.22

Since $\delta^n \left(C^n_{\leq}(S^1, A^1) \right) \subseteq C^{n+1}_{\leq}(S^1, A^1)$, we obtain the cochain complex

$$C^1_{\leq}(S^1, A^1) \stackrel{\delta^1}{\to} \dots \stackrel{\delta^{n-1}}{\to} C^n_{\leq}(S^1, A^1) \stackrel{\delta^n}{\to} \dots$$

Definition 1.23

One naturally defines the groups of order-preserving *n*-cocycles $Z_{\leq}^{n}(S^{1}, A^{1})$, *n*-coboundaries $B_{\leq}^{n}(S^{1}, A^{1})$ and *n*-cohomologies $H_{\leq}^{n}(S^{1}, A^{1})$ of *S* with values in *A*.

直 ト イ ヨ ト イ ヨ ト

Crossed modules over inverse semigroups and the third inverse semigroup cohomology group

Outline

- Crossed modules over groups and the corresponding extensions
- The idea of the proof
- Modules over inverse semigroups and inverse semigroup cohomology
- 2 Crossed modules over inverse semigroups and the third inverse semigroup cohomology group
 - Crossed S-modules
 - Crossed module extensions
 - From crossed module extensions of A by T to $H^3(T^1, A^1)$
 - From admissible crossed module extensions of A by T to $H^3_{<}(T^1, A^1)$
 - From $H^3_{\leq}(T^1, A^1)$ to crossed module extensions of A by T

Relatively invertible endomorphisms of A

• A a semilattice of groups.

Definition 2.1

An endomorphism $\varphi : A \to A$ is called relatively invertible if there exist $\bar{\varphi} \in \operatorname{End}(A)$ and $e_{\varphi} \in E(A)$ satisfying:

$$\ \ \, \bar{\varphi}\circ\varphi(a)=e_{\varphi}a \ \, \text{and} \ \, \varphi\circ\bar{\varphi}(a)=\varphi(e_{\varphi})a, \ \, \text{for any} \ \, a\in A; \ \,$$

2 e_{φ} is the identity of $\overline{\varphi}(A)$ and $\varphi(e_{\varphi})$ is the identity of $\varphi(A)$.

The set of relatively invertible endomorphisms of A is denoted by end(A).

Proposition 2.2 (Proposition 3.4 from [1])

The set end(A) is an inverse subsemigroup of End(A) isomorphic to $\mathcal{I}_{ui}(A)$, the semigroup of isomorphisms between principal ideals of A.

Crossed S-modules

- S an inverse semigroup;
- N a semilattice of groups.

Definition 2.3 (Dokuchaev, Khrypchenko, Makuta [3])

A crossed S-module structure on N is a triple (α, λ, β) , where α is an isomorphism $E(S) \to E(N)$, λ is a homomorphism $S \to \text{end}(N)$ and β is an idempotent-separating homomorphism $N \to S$ such that $\beta|_{E(N)} = \alpha^{-1}$ and

• N a crossed S-module.

Proposition 2.4

The semigroup $A := \beta^{-1}(E(S))$ is a semilattice of (abelian) groups contained in C(N).

Proposition 2.5

The collection $\mathcal{B} = \{\beta(N_e)\}_{e \in E(N)}$ is a group kernel normal system in S. Moreover, if $T := S/\rho_{\mathcal{B}}$ and $\pi := \rho_{\mathcal{B}}^{\natural} : S \to T$, then π is idempotent-separating and $\pi^{-1}(E(T)) = \beta(N)$.

Outline

- Crossed modules over groups and the corresponding extensions
- The idea of the proof
- Modules over inverse semigroups and inverse semigroup cohomology
- 2 Crossed modules over inverse semigroups and the third inverse semigroup cohomology group
 - Crossed S-modules
 - Crossed module extensions
 - From crossed module extensions of A by T to $H^3(T^1, A^1)$
 - From admissible crossed module extensions of A by T to $H^3_{\leq}(T^1, A^1)$
 - From $H^3_{\leq}(T^1, A^1)$ to crossed module extensions of A by T

Crossed module extensions of A by T

- A a semilattice of abelian groups;
- *T* an inverse semigroup.

Definition 2.6

A crossed module extension of A by T is a 4-term sequence

$$A \xrightarrow{i} N \xrightarrow{\beta} S \xrightarrow{\pi} T,$$

where

- N is a crossed S-module and β is the corresponding crossed module homomorphism;
- 2) *i* is a monomorphism and π is an idempotent-separating epimorphism;

3
$$i(A) = \beta^{-1}(E(S))$$
 and $\beta(N) = \pi^{-1}(E(T))$.

Definition 2.7

By the equivalence of crossed module extensions of A by T we mean the smallest equivalence relation identifying $A \xrightarrow{i} N \xrightarrow{\beta} S \xrightarrow{\pi} T$ and $A \xrightarrow{i'} N' \xrightarrow{\beta'} S' \xrightarrow{\pi'} T$, such that there are homomorphisms $\varphi_1 : N \to N'$ and $\varphi_2 : S \to S'$

making the following diagram commute

$$\begin{array}{cccc} A & \stackrel{i}{\longrightarrow} & N & \stackrel{\beta}{\longrightarrow} & S & \stackrel{\pi}{\longrightarrow} & T \\ \| & & & \downarrow \varphi_1 & & \downarrow \varphi_2 & \| \\ A & \stackrel{i'}{\longrightarrow} & N' & \stackrel{\beta'}{\longrightarrow} & S' & \stackrel{\pi'}{\longrightarrow} & T \end{array}$$

2 satisfying $\varphi_1 \circ \lambda_s = \lambda'_{\varphi_2(s)} \circ \varphi_1$ for all $s \in S$.

Proposition 2.8

Any crossed module extension of A by T induces a T-module structure on A. Moreover, equivalent crossed module extensions of A by T induce the same T-module structure on A.

Definition 2.9

A crossed module extension of a *T*-module *A* by *T* is a crossed module extension of *A* by *T* which induces the given *T*-module structure on *A*. Denote by $\mathcal{E}(T, A)$ the set of equivalence classes of crossed module extensions of a *T*-module *A* by *T*.

Outline

- Crossed modules over groups and the corresponding extensions
- The idea of the proof
- Modules over inverse semigroups and inverse semigroup cohomology
- Crossed modules over inverse semigroups and the third inverse semigroup cohomology group
 - Crossed S-modules
 - Crossed module extensions
 - From crossed module extensions of A by T to $H^3(T^1, A^1)$
 - From admissible crossed module extensions of A by T to $H^3_{<}(T^1, A^1)$
 - From $H^3_{\leq}(T^1, A^1)$ to crossed module extensions of A by T

• $\varphi: S \to T$ a homomorphism of inverse semigroups.

Definition 2.10

A map $\rho: \varphi(S) \to S$ such that $\varphi \circ \rho = \mathrm{id}_{\varphi(S)}$ will be called a transversal of φ . We say that ρ respects idempotents if $\rho(E(\varphi(S))) \subseteq E(S)$.

Remark 2.11

Since $E(\varphi(S)) = \varphi(E(S))$, one may always choose a transversal ρ of φ which respects idempotents.

• $A \xrightarrow{i} N \xrightarrow{\beta} S \xrightarrow{\pi} T$ a crossed module extension of A by T.

Lemma 2.12

The crossed module extension determines an element $c \in C^3(T^1, A^1)$.

- **1** Choose a transversal ρ of π .
- **2** There exists a unique $f : T^2 \to \beta(N)$ such that $f(x, y) \in \beta(N)_{\rho(xy)\rho(xy)^{-1}}$ and $\rho(x)\rho(y) = f(x, y)\rho(xy)$.
- Choose $F: T^2 \to N$ such that $\beta(F(x, y)) = f(x, y)$, where $F(x, y) \in N_{\alpha(\rho(xy)\rho(xy)^{-1})}$.
- There exists a unique $c : T^3 \to A$ such that $\lambda_{\rho(x)}(F(y,z))F(x,yz) = i(c(x,y,z))F(x,y)F(xy,z)$, where $c(x,y,z) \in A_{i^{-1}\circ\alpha(\rho(xyz)\rho(xyz)^{-1})}$.

Lemma 2.13

The cochain c is a cocycle from $Z^3(T^1, A^1)$.

Lemma 2.14

Another choices of ρ and F lead to a cocycle cohomologous to c.

Lemma 2.15

Equivalent extensions induce cohomologous cocycles.

Proposition 2.16

There is a well-defined function from $\mathcal{E}(T, A)$ to $H^3(T^1, A^1)$.

Outline

• Crossed modules over groups and the corresponding extensions

- The idea of the proof
- Modules over inverse semigroups and inverse semigroup cohomology
- 2 Crossed modules over inverse semigroups and the third inverse semigroup cohomology group
 - Crossed S-modules
 - Crossed module extensions
 - From crossed module extensions of A by T to $H^3(T^1, A^1)$
 - From admissible crossed module extensions of A by T to $H^3_{<}(T^1, A^1)$
 - From $H^3_{<}(T^1, A^1)$ to crossed module extensions of A by T

•
$$\rho: \varphi(S) \to S$$
 a transversal of $\varphi: S \to T$.

Definition 2.17

We say that ρ is order-preserving whenever $x \leq y \Rightarrow \rho(x) \leq \rho(y)$ for all $x, y \in \varphi(S)$.

Remark 2.18

The following statements are equivalent:

- ρ is order-preserving and respects idempotents;
- 2 $\rho(ex) = \rho(e)\rho(x)$ for all $e \in E(\varphi(S))$ and $x \in \varphi(S)$;
- **3** $\rho(xe) = \rho(x)\rho(e)$ for all $e \in E(\varphi(S))$ and $x \in \varphi(S)$.

• $A \xrightarrow{i} N \xrightarrow{\beta} S \xrightarrow{\pi} T$ a crossed module extension of A by T.

Definition 2.19

The crossed module extension of A by T will be called admissible if β and π possess order-preserving transversals which respect idempotents. The set of equivalence classes of admissible crossed module extensions of A by T will be denoted by $\mathcal{E}_{\leq}(T, A)$.

Corollary 2.20

There is a well-defined function from $\mathcal{E}_{\leq}(T, A)$ to $H^3_{\leq}(T^1, A^1)$.

Outline

- Crossed modules over groups and the corresponding extensions
- The idea of the proof
- Modules over inverse semigroups and inverse semigroup cohomology
- 2 Crossed modules over inverse semigroups and the third inverse semigroup cohomology group
 - Crossed S-modules
 - Crossed module extensions
 - From crossed module extensions of A by T to $H^3(T^1, A^1)$
 - From admissible crossed module extensions of A by T to $H^3_{<}(T^1, A^1)$
 - From $H^3_{\leq}(T^1, A^1)$ to crossed module extensions of A by T

- T an inverse semigroup;
- G a group.

Definition 2.21 (McAlister-Reilly [6])

An *E*-unitary cover of T through G is an *E*-unitary inverse semigroup S, such that

• the maximum group image of S is isomorphic to G;

2) there is an idempotent-separating epimorphism $\pi: S \to T$.

Proposition 2.22 (McAlister-Reilly [6])

Each inverse semigroup admits an E-unitary cover.

- *T* an inverse semigroup;
- identify T with $\{[t] \mid t \in T\}$ and let $T^{-1} := \{[t]^{-1} \mid t \in T\};$
- $\varphi: F(T \sqcup T^{-1}) \to T$ the epimorphism of semigroups such that $\varphi([t]) = t$ and $\varphi([t]^{-1}) = t^{-1}$;
- $\psi: F(T \sqcup T^{-1}) \to FG(T)$ the epimorphism of semigroups such that $\psi([t]) = [t]$ and $\psi([t]^{-1}) = [t]^{-1}$;
- $\Phi: T \to 2^{FG(T)}$, where $\Phi(t) = \psi(\varphi^{-1}(t))$.

Proposition 2.23 (McAlister-Reilly [6])

The semigroup $S := \Pi(T, FG(T), \Phi)$ is an *E*-unitary cover of *T* through FG(T), where $\Pi(T, FG(T), \Phi) = \{(t, w) \in T \times FG(T) \mid w \in \Phi(t)\}.$

•
$$w \in F(T \sqcup T^{-1}).$$

Definition 2.24

The word w is irreducible if it has no subwords of the form uu^{-1} , where $u \in F(T \sqcup T^{-1})$.

Remark 2.25

Each $w \in FG(T) \setminus \{\epsilon\}$ admits a unique representation as a non-empty irreducible word irr (w) over $T \sqcup T^{-1}$. Hence, there is a well-defined map irr : $FG(T) \setminus \{\epsilon\} \rightarrow F(T \sqcup T^{-1})$.

Definition 2.26

Define
$$\nu : FG(T) \to T^1$$
, where $T^1 = T \sqcup \{1\}$, by
 $\nu(w) = \begin{cases} \varphi(\operatorname{irr}(w)), & w \neq \epsilon, \\ 1, & w = \epsilon. \end{cases}$

Proposition 2.27

We have
$$S = \{(t, w) \in T \times FG(T) \mid t \leq \nu(w)\}$$
 and $E(S) = \{(e, \epsilon) \mid e \in E(T)\} = E(T) \times \{\epsilon\}.$

Remark 2.28

If T is a group and $(t, w) \in S$, then $(t, w) = (\nu(w), w)$, so $S \cong FG(T)$.

A B A A B A

π : S → T the covering epimorphism, π(t, w) = t;
K := π⁻¹(E(T)).

Remark 2.29

K is a semilattice of groups $K_e = \{(e, w) \in E(T) \times FG(T) \mid e \leq \nu(w)\}.$

• $N := \bigsqcup_{e \in E(T)} (A_e \times K_e)$ with coordinatewise multiplication.

Remark 2.30

If one writes the elements of N as triples (a, e, w), then $N = \{(a, e, w) \in A \times E(T) \times FG(T) \mid a \in A_e \text{ and } e \leq \nu(w)\}.$

•
$$(\theta, \eta)$$
 a *T*-module structure on *A*;

•
$$i: A \rightarrow N$$
, $i(a) = (a, \theta^{-1}(aa^{-1}), \epsilon)$;

• $\alpha: E(S) \rightarrow E(N), \ \alpha(e, \epsilon) = (\theta(e), e, \epsilon);$

•
$$\beta: N \rightarrow S, \beta(a, e, w) = (e, w).$$

Proposition 2.31

Given $c \in Z^3_{\leq}(T^1, A^1)$, there exists a homomorphism $\lambda : S \to \text{end } N$, such that (α, λ, β) is a crossed S-module structure on N and the sequence $A \xrightarrow{i} N \xrightarrow{\beta} S \xrightarrow{\pi} T$ is a crossed module extension of the T-module A by T.

The construction of λ

$$\lambda_{s}(n) = \begin{cases} (\zeta_{t}(w)\eta_{t}(a), tet^{-1}, uwu^{-1}), & u \neq \epsilon, \\ \alpha(s)n, & u = \epsilon, \end{cases}$$

where

$$\zeta_t(w) = \begin{cases} \xi_t(\operatorname{irr}(w)), & w \neq \epsilon, \\ \theta(tt^{-1}), & w = \epsilon. \end{cases}$$

< □ > < 同 > < 回 > < 回 > < 回 >

2

•
$$c \in Z^3_{\leq}(T^1, A^1)$$
 strongly normalized;

• $t \in T$;

•
$$w \in F(T \sqcup T^{-1}).$$

If $w = [x]^{-1}u$ for some $x \in T$ and $u \in F(T \sqcup T^{-1})^1$, then

$$\xi_t(w) := c(t, x^{-1}, x)^{-1} \xi_t([x^{-1}]u).$$

We now proceed by induction on I(w) (the length of w).

The construction of $\xi_t : F(T \sqcup T^{-1}) \to A$

Base of induction. If w = [x] for some $x \in T$, then

$$\xi_t(w) := \theta(txx^{-1}t^{-1}).$$

Inductive step. I(w) > 1 and w = [x]u for some $x \in T$ and $u \in F(T \sqcup T^{-1})$. **Case 1.** If w = [x][y]v for some $x, y \in T$ and $v \in F(T \sqcup T^{-1})^1$, then

$$\xi_t(w) := c(t, x, y)\xi_t([xy]v).$$

Case 2. If $w = [x][y]^{-1}v$ for some $x, y \in T$ and $v \in F(T \sqcup T^{-1})^1$, then

$$\xi_t(w) := c(t, xy^{-1}, y)^{-1} \xi_t([xy^{-1}]v).$$

From $H^3_{\leq}(T^1, A^1)$ to $\mathcal{E}(T, A)$

- $c,c'\in Z^3_{\leq}(\mathcal{T}^1,\mathcal{A}^1)$ cohomologous;
- $A \xrightarrow{i} N \xrightarrow{\beta} S \xrightarrow{\pi} T$ and $A \xrightarrow{i'} N' \xrightarrow{\beta'} S' \xrightarrow{\pi'} T$ the corresponding crossed module extensions of A by T.

Proposition 2.32

The crossed module extensions
$$A \xrightarrow{i} N \xrightarrow{\beta} S \xrightarrow{\pi} T$$
 and $A \xrightarrow{i'} N' \xrightarrow{\beta'} S' \xrightarrow{\pi'} T$ are equivalent.

Proposition 2.33

```
There is a map from H^3_{\leq}(T^1, A^1) to \mathcal{E}(T, A).
```


通 ト イ ヨ ト イ ヨ ト

From $H^3_{\leq}(T^1, A^1)$ to $\mathcal{E}_{\leq}(T, A)$

• T an F-inverse monoid.

Lemma 2.34

The crossed module extension $A \xrightarrow{i} N \xrightarrow{\beta} S \xrightarrow{\pi} T$ is admissible.

Corollary 2.35

There is a map from $H^3_{\leq}(T^1, A^1)$ to $\mathcal{E}_{\leq}(T, A)$.

Theorem 2.36 (Dokuchaev, Khrypchenko, Makuta [3])

There is a bijective correspondence between $H^3_{\leq}(T^1, A^1)$ and $\mathcal{E}_{\leq}(T, A)$.

2

Mykola Khrypchenko (UFSC)

< □ > < □ > < □ > < □ > < □ >

Dokuchaev, M., and Khrypchenko, M.

Twisted partial actions and extensions of semilattices of groups by groups.

Int. J. Algebra Comput. 27, 7 (2017), 887–933.

DOKUCHAEV, M., AND KHRYPCHENKO, M. Partial cohomology of groups and extensions of semilattices of abelian groups.

J. Pure Appl. Algebra 222 (2018), 2897–2930.

J. Algebra 593 (2022), 341-397.

References II

LAUSCH, H.

Cohomology of inverse semigroups.

J. Algebra 35 (1975), 273–303.

MACLANE, S.

Cohomology theory in abstract groups. III. Operator homomorphisms of kernels.

Ann. Math. (2) 50 (1949), 736-761.

MCALISTER, D. B., AND REILLY, N. R. *E*-unitary covers for inverse semigroups. *Pacific J. Math.* 68, 1 (1977), 161–174.

WHITEHEAD, J. H. C.

Combinatorial homotopy. II.

Bull. Am. Math. Soc. 55 (1949), 453-496.

THANK YOU!

53 / 53

æ

(日) (四) (日) (日) (日)