On groupoid algebras with applications to Leavitt labelled path algebras - part 4

Gilles Gonçalves de Castro

Universidade Federal de Santa Catarina

Cimpa School

From Dynamics to Algebra and Representation Theory and Back February 9th, 2022

Free groups

Given a set A, let us describe the construction of the free group \mathbb{F}_A generated by A.

- If $\mathcal{A} = \emptyset$, we let \mathbb{F}_{\emptyset} be the trivial group.
- For A ≠ Ø, we consider a set of "inverses" for A. It is just a set denoted by A⁻¹ = {a⁻¹ | a ∈ A} such that A ∩ A⁻¹ = Ø.
- (A ∪ A⁻¹)* denotes the set of all words with letters in A ∪ A⁻¹, including the empty word ω.
- A word in (A ∪ A⁻¹)* is said to be reduced if no letter in A is adjacent to its inverse.
- We let 𝔽_𝐴 be the set of all reduced words, which includes the empty word.

Example

Let $\mathcal{A} = \{a, b, c\}$, then $aab^{-1}b^{-1}a^{-1}c \in \mathbb{F}_{\mathcal{A}}$, but $aab^{-1}ba^{-1}c \notin \mathbb{F}_{\mathcal{A}}$.

We now describe the product in $\mathbb{F}_{\mathcal{A}}$:

- The empty word ω is the identity of $\mathbb{F}_{\mathcal{A}}$.
- The product of two reduced words is the concatenation follows by simplifications if needed.

Example

Let
$$\mathcal{A} = \{a, b, c\}$$
, $x = aab^{-1}$ and $y = ba^{-1}c$, then
 $xy = aab^{-1}ba^{-1}c$
 $xy = aaa^{-1}c$
 $xy = ac$.

Remark

- Every element of (A ∪ A⁻¹)* can be seen as an element of F_A by interpreting concatenation as the multiplication of F_A.
- There is length function | · | : 𝔽 → ℕ that returns the number of letters in a reduced word. The empyt word has length 0.

Gilles G. de Castro (UFSC)

Groupoid algebras - part 4

Group actions

Let X be a set and G a group. A function

is said to be a group action if

• $e \cdot x = x$ for all $x \in X$, where *e* is the identity of the group,

• $g \cdot (h \cdot x) = (gh) \cdot x$ for all $x \in X$ and $g, h \in G$.

Alternatively, a group action can be described as a family of functions $\{\eta_g : X \to X\}_{g \in G}$ such that

- $\eta_e = Id_X;$
- $\eta_g \circ \eta_h = \eta_{gh}$ for all $g, h \in G$.

We identify the two approaches via the equation $\eta_g(x) = g \cdot x$ for all $x \in X$ and $g \in G$.

Partial actions

Definition

A partial action of a group *G* on a set *X* is a pair

 $\Phi = (\{U_t\}_{t \in G}, \{\phi_t\}_{t \in G})$ consisting of a collection $\{U_t\}_{t \in G}$ of subsets of X and a collection $\{\phi_t\}_{t \in G}$ of bijections, $\phi_t : U_{t-1} \to U_t$, such that

- (i) $U_e = X$ and ϕ_e is the identity on X,
- (ii) $\phi_s(U_{s^{-1}} \cap U_t) = U_s \cap U_{st}$,
- (iii) $\phi_s(\phi_t(x)) = \phi_{st}(x)$ for every $x \in U_{t^{-1}} \cap U_{(st)^{-1}}$.

If the partial action is given by the free group ${\mathbb F}$ on a set of generators, then the partial action is semi-saturated if

$$\phi_{\boldsymbol{s}} \circ \phi_{\boldsymbol{t}} = \phi_{\boldsymbol{st}}$$

for every $s, t \in \mathbb{F}$ such that |st| = |s| + |t|, and orthogonal if $U_a \cap U_b = \emptyset$ for a, b in the set of generator with $a \neq b$.

Examples of partial actions

Example (Restriction of actions)

Suppose that $\eta = {\eta_g : Y \to Y}_{g \in G}$ is an action of a group *G* on a set *Y*. Given $X \subseteq Y$, we will restrict η to *X*. Unless *X* is *G*-invariant (ie, $\eta_g(X) = X$ for all $g \in G$), we do not obtain an action. Nevertheless, we always obtain a partial action as follows: for each $t \in G$, we define $U_t = X \cap \eta_t(X)$ and $\phi_t : U_{t-1} \to U_t$ by $\phi_t(x) = \eta_t(x)$. Then $({U_t}_{t\in G}, {\phi_t}_{t\in G})$ is a partial action.

Example (Graphs)

Let \mathcal{E} be a graph and $\partial \mathcal{E}$ its boundary path space. Let also \mathbb{F} be the free group generated by \mathcal{E}^1 . We identify finite paths as elements of \mathbb{F} . We will define a partial action $(\{U_t\}_{t\in\mathbb{F}}, \{\phi_t\}_{t\in\mathbb{F}})$ of \mathbb{F} on $\partial \mathcal{E}$, which is orthogonal and semi-saturated. The main idea is that $e \in E^1$ acts by adding e at the beginning of path and e^{-1} acts by removing e from the beginning of a path.

Gilles G. de Castro (UFSC)

Groupoid algebras - part 4

Example (Graphs - continued)

We divide the definition of U_t in a few cases:

- $U_{\omega} = \partial \mathcal{E}$,
- $U_{\alpha} = \{ \alpha \mu \in \partial \mathcal{E} \}$ for $\alpha \in \mathcal{E}^{\geq 1}$,
- $U_{\beta^{-1}} = \{ \mu \in \partial \mathcal{E} \mid s(\mu) = r(\beta) \}$ for $\beta \in \mathcal{E}^{\geq 1}$,
- $U_{\alpha\beta^{-1}} = \{\alpha\mu \in \partial \mathcal{E}\}$ for $\alpha, \beta \in \mathcal{E}^{\geq 1}$ such that $r(\alpha) = r(\beta)$ and $\alpha\beta^{-1}$ is in reduced form in \mathbb{F} ,
- $U_t = \emptyset$ for all other cases.

Similarly we divide the definition of ϕ_t in a few cases

- $\phi_{\omega} = Id_{\partial \mathcal{E}},$
- $\phi_{\alpha}(\mu) = \alpha \mu$ for $\alpha \in \mathcal{E}^{\geq 1}$,
- $\phi_{\beta^{-1}}(\beta\mu) = \mu$ for $\beta \in \mathcal{E}^{\geq 1}$,
- $\phi_{\alpha\beta^{-1}}(\beta\mu) = \alpha\mu$ for $\alpha, \beta \in \mathcal{E}^{\geq 1}$ such that $r(\alpha) = r(\beta)$ and $\alpha\beta^{-1}$ is in reduced form in \mathbb{F} ,
- ϕ_t is the empty function for all other cases.

The transformation groupoid

Let $\Phi = (\{U_t\}_{t \in G}, \{\phi_t\}_{t \in G})$ be a partial action of *G* on a set *X*. Define the transformation groupoid as the set

 $G \ltimes_{\Phi} X = \{(x, t, y) \in X \times G \times X \mid y \in U_{t^{-1}} \text{ and } x = \phi_t(y)\}$

with operations

$$(x,t,y)(y,s,z)=(x,ts,z)$$

and

$$(x, t, y)^{-1} = (y, t^{-1}, y),$$

where $(x, t, y), (y, s, z) \in G \ltimes_{\Phi} X$.

Remark

Note that the information of a triple $(x, t, y) \in G \ltimes_{\Phi} X$ is completely encoded in the pair (t, y) or (x, t).

Topological partial actions

Suppose now that X is a topological space and for simplicity suppose that G is a discrete group. A topological partial action of G on X is a partial action $\Phi = (\{U_t\}_{t \in G}, \{\phi_t\}_{t \in G})$ such that for all $t \in G$, U_t is open and ϕ_t is a homeomorphism.

On $G \ltimes_{\Phi} X$ we put the topology induced by the product topology $X \times G \times X$. If X is a Stone space, then $G \ltimes_{\Phi} X$ is a Hausdorff ample groupoid.

Example

The partial action of \mathbb{F} on $\partial \mathcal{E}$ defined above is a topological partial action and $\mathbb{F} \ltimes_{\Phi} \partial \mathcal{E}$ is a Hausdoff ample groupoid. In fact it isomorphic to graph groupoid $\mathcal{G}_{\mathcal{E}}$ seen in part 1 via $(\alpha \mu, \alpha \beta^{-1}, \beta \mu) \mapsto (\alpha \mu, |\alpha| - |\beta|, \beta \mu).$

Algebraic partial actions

Let *R* be a commutative unital ring and \mathcal{A} an *R*-algebra. We say that a partial action $\tau = (\{D_t\}_{t \in G}, \{\tau_t\}_{t \in G})$ of a group *G* on \mathcal{A} is an algebraic partial action if for every $t \in G$, D_t is a (two-sided) ideal of \mathcal{A} and τ_t is an isomorphism of *R*-algebras.

We will define an *R*-algebra from an algebraic partial action. This algebra is sometimes called a partial skew group ring and other times an (algebraic) partial crossed product.

As an *R*-module, we define

$$\mathcal{A}\rtimes_{\tau} G = \bigoplus_{t\in G} D_t.$$

An element of $A \rtimes_{\tau} G$ will be written as a finite sum $\sum_{t \in G} a_t \delta_t$, where $a_t \in D_t$ and δ_t can be thought as a symbol to indicate the coordinate *t*.

In order to define the product in $\mathcal{A} \rtimes_{\tau} G$, it is enough to understand what happens for elements of the form $a_s \delta_s$ and $b_t \delta_t$ and then extend it in a bilinear way.

If we were to copy partial group rings, we would define the product as

 $a_s \delta_s \cdot b_t \delta_t = a_s \tau_s(b_t) \delta_{st},$

however, we do not know whether $b_t \in D_{s^{-1}}$. To fix this, we observe that we can apply $\tau_{s^{-1}}$ on a_s and that $\tau_{s^{-1}}(a_s) \in D_{s^{-1}}$. Since $D_{s^{-1}}$ is an ideal, we have that $\tau_{s^{-1}}(a_s)b_t \in D_{s^{-1}}$, on which we can apply τ_s . We then define the product as

 $a_s \delta_s \cdot b_t \delta_t = \tau_s(\tau_{s^{-1}}(a_s)b_t)\delta_{st}.$

Remark

This product is not always associative.

Gilles G. de Castro (UFSC)

Theorem

Let $\tau = (\{D_t\}_{t \in G}, \{\tau_t\}_{t \in G})$ be an algebraic partial action such that D_t is idempotent for all $t \in G$ (that is, $D_t D_t = D_t$). Then the product on $\mathcal{A} \rtimes_{\tau} G$ defined above is associative.

Definition

Let *S* be a ring and *F* a family of idempotents of *S*. We say that *F* is a family of local units for *S* if for every $n \in \mathbb{N}$ and s_1, \ldots, s_n , there exists $f \in F$ such that $fs_i = s_i f = s_i$ for all $i \in \{1, \ldots, n\}$.

Remark

If S has a family of local units then S is idempotent.

Dual partial action

Let *G* be a discrete group and *X* be a Hausdorff space with a basis of compact-set (ie, a Stone space). Given a topological partial action $\Phi = (\{U_t\}_{t \in G}, \{\phi_t\}_{t \in G})$ of *G* on *X*, suppose that U_t is clopen for all $t \in G$. From this, we can build an algebraic partial action of *G* on Lc(*X*, *R*), which we call a dual partial action.

For each $t \in G$, we set $D_t = Lc(U_t, R)$ seen as an ideal of Lc(X, R) by a extending a function $f : U_t \to R$ to $f : X \to R$ by defining it to be 0 outside U_t . Because U_t is clopen this extension is indeed in Lc(X, R). We observe that $F = \{1_V \mid V \subseteq U_t \text{ is compact-open}\}$ is a family of local units for D_t .

We also define $\hat{\phi}_t : D_{t^{-1}} \to D_t$ by $\hat{\phi}_t(f) = f \circ \phi_{t^{-1}}$.

Proposition

 $\hat{\Phi} = (\{D_t\}_{t \in G}, \{\hat{\phi}_t\}_{t \in G})$ defined as above is an algebraic partial action such that D_t is idempotent for all t.

Gilles G. de Castro (UFSC)

Groupoid algebras - part 4

Theorem

With the above construction $A_R(G \ltimes_{\Phi} X) \cong Lc(X, R) \rtimes_{\hat{\Phi}} G$.

Idea of the proof.

Given $f \in A_R(G \ltimes_{\Phi} X)$, for each $t \in G$, we define $f_t : U_t \to R$ by $f_t(x) = f(x, t, \phi_{t-1}(x))$. The map given by

$$f\mapsto \sum_{t\in G}f_t\delta_t$$

is then a well-defined homomorphism of *R*-algebras.

For the inverse, we send a sum $\sum_{t \in G} f_t \delta_t$ to the function $f : G \ltimes_{\Phi} X \to R$ given by $f(x, t, y) = f_t(x)$.

Partial actions from labelled spaces

Given a labelled space $(\mathcal{E}, \mathcal{L}, \mathcal{B})$, that we have a topological correspondence (E^1, s, r) from F^0 to E^0 , where $E^0 = X_{\omega}$, $F^0 = X_{\omega} \cup \{\emptyset\}$ its one-point extension and $E^1 = \bigsqcup_{a \in \mathcal{A}} X_a$ with the disjoint topology. We denote an element of E^1 by $e_{\mathcal{F}}^a$ for $a \in \mathcal{A}$ and $\mathcal{F} \in X_a$. And we have a boundary path space ∂E .

Analogous to the graph case we can define

•
$$U_{\omega} = \partial E$$
,

- $U_{\alpha} = \{ e_{\mathcal{F}_1}^{\alpha_1} \cdots e_{\mathcal{F}_n}^{\alpha_n} \mu \in \partial E \}$ for $\alpha \in \mathcal{L}^n$ with $n \ge 1$,
- $U_{\beta^{-1}} = \{ \mu \in \partial E \mid r(\beta) \in s(\mu) \}$ for $\beta \in \mathcal{L}^{\geq 1}$,
- $U_{\alpha\beta^{-1}} = \{ e_{\mathcal{F}_1}^{\alpha_1} \cdots e_{\mathcal{F}_n}^{\alpha_n} \mu \in \partial E \mid r(\beta) \in s(\mu) \}$ for $\alpha, \beta \in \mathcal{L}^{\geq 1}$ such that $|\alpha| = n, r(\alpha) \cap r(\beta) \neq \emptyset$ and $\alpha\beta^{-1}$ is in reduced form in \mathbb{F} ,
- $U_t = \emptyset$ for all other cases.

Remark

For all $t \in \mathbb{F} \setminus \{\omega\}$, we have that U_t is compact-open.

Gilles G. de Castro (UFSC)

For the maps, we can prove that $\phi_{\alpha^{-1}} : U_{\alpha} \to U_{\alpha^{-1}}$ given by $\phi_{\alpha^{-1}}(e^{\alpha_1}_{\mathcal{F}_1} \cdots e^{\alpha_n}_{\mathcal{F}_n} \mu) = \mu$ is a well-defined homeomorphism.

Because of the filters $\mathcal{F}_1, \ldots, \mathcal{F}_n$ the description of the inverse is much more technical. Nevertheless, we can define $\phi_{\alpha} = (\phi_{\alpha^{-1}})^{-1}$ and $\phi_{\alpha\beta^{-1}} = \phi_{\alpha} \circ \phi_{\beta^{-1}}$, whenever it makes sense.

Theorem

The construction above results in an orthogonal semi-saturated partial action Φ of \mathbb{F} on ∂E such that $\Gamma(E) \cong \mathbb{F} \ltimes_{\Phi} \partial E$.

Corollary

 $L_R(\mathcal{E},\mathcal{L},\mathcal{B}) \cong Lc(\partial E,R) \rtimes_{\hat{\Phi}} \mathbb{F}.$

Theorem

Let X be a Stone space and let $\rho = (\{V_t\}_{t \in \mathbb{F}}, \{\rho_t\}_{t \in \mathbb{F}})$ be a semi-saturated, orthogonal topological partial action of a free group \mathbb{F} on X such that V_t is compact-open for all $t \in \mathbb{F} \setminus \{\omega\}$. Then there exists a labelled space $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ and a homeomorphism $f : X \to \partial E$, where ∂E , such that f is equivariant with respect to the actions ρ and Φ given by the above theorem. In particular $\mathbb{F} \ltimes_{\rho} X$ and $\mathbb{F} \ltimes_{\varphi} \partial E$ are isomorphic as topological groupoids.

Idea of the proof.

A is the set of generators of F,

•
$$\mathcal{E}^0 = X$$
,

- $\mathcal{E}^1 = \{(a, x) \in \mathcal{A} \times X \mid x \in V_a\},\$
- $s(a, x) = x, r(a, x) = \rho_{a^{-1}}(x),$
- $\mathcal{L}(a, x) = a$,
- \mathcal{B} is the set of compact-open subsets of X.

Corollary

Let *R* be a commutative unital ring and *A* be a torsion-free commutative *R*-algebra generated by its idempotents elements. Let also $\tau = (\{D_t\}_{t \in \mathbb{F}}, \{\tau_t\}_{t \in \mathbb{F}})$ be a semi-saturated, orthogonal algebraic partial action of a free group \mathbb{F} on *A* such that D_t is unital for every $t \in \mathbb{F} \setminus \{\omega\}$. Then, there exists a labelled space $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ such that $\mathcal{A} \rtimes_{\tau} \mathbb{F} \cong L_R(\mathcal{E}, \mathcal{L}, \mathcal{B})$.

Idea of the proof.

We have that $\mathcal{A} \cong Lc(X, \mathbb{R})$ for some Stone space X. For $t \in \mathbb{F} \setminus \{\omega\}$, because D_t is unital, we have $D_t \cong Lc(U_t, \mathbb{R})$ for some compact-open U_t subset of X.

We can then define partial action $\rho = (\{U_t\}_{t \in \mathbb{F}}, \{\rho_t\}_{t \in \mathbb{F}})$ such that its dual $\hat{\rho}$ is essentially the same as τ . Hence, for the labelled space $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ of the previous theorem, we get

$$\mathcal{A} \rtimes_{\tau} \mathbb{F} \cong \mathsf{Lc}(X, R) \rtimes_{\hat{\rho}} \mathbb{F} \cong L_R(\mathcal{E}, \mathcal{L}, \mathcal{B}).$$

References

R. Exel.

Partial dynamical systems, Fell bundles and applications, volume 224 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2017.

- V. M. Beuter and D. Gonçalves. The interplay between Steinberg algebras and skew rings. J. Algebra, 497:337–362, 2018
- 📱 G. Boava, G. G. de Castro, D. Gonçalves, and D. W. van Wyk. Leavitt path algebras of labelled graphs. Arxiv, arXiv:2106.06036 [math.RA], 2021.
- G. G. de Castro and E. J. Kang.

 C^* -algebras of generalized Boolean dynamical systems as partial crossed products

Arxiv, arXiv:2202.02008 [math.OA], 2022.

Thank you!