On groupoid algebras with applications to Leavitt labelled path algebras - part 4

Gilles Gonçalves de Castro

Universidade Federal de Santa Catarina
Cimpa School
From Dynamics to Algebra and Representation Theory and Back February 9th, 2022

Free groups

Given a set \mathcal{A}, let us describe the construction of the free group $\mathbb{F}_{\mathcal{A}}$ generated by \mathcal{A}.

- If $\mathcal{A}=\emptyset$, we let \mathbb{F}_{\emptyset} be the trivial group.
- For $\mathcal{A} \neq \emptyset$, we consider a set of "inverses" for \mathcal{A}. It is just a set denoted by $\mathcal{A}^{-1}=\left\{a^{-1} \mid a \in \mathcal{A}\right\}$ such that $\mathcal{A} \cap \mathcal{A}^{-1}=\emptyset$.
- $\left(\mathcal{A} \cup \mathcal{A}^{-1}\right)^{*}$ denotes the set of all words with letters in $\mathcal{A} \cup \mathcal{A}^{-1}$, including the empty word ω.
- A word in $\left(\mathcal{A} \cup \mathcal{A}^{-1}\right)^{*}$ is said to be reduced if no letter in \mathcal{A} is adjacent to its inverse.
- We let $\mathbb{F}_{\mathcal{A}}$ be the set of all reduced words, which includes the empty word.

Example

Let $\mathcal{A}=\{a, b, c\}$, then $a a b^{-1} b^{-1} a^{-1} c \in \mathbb{F}_{\mathcal{A}}$, but $a a b^{-1} b a^{-1} c \notin \mathbb{F}_{\mathcal{A}}$.

We now describe the product in $\mathbb{F}_{\mathcal{A}}$:

- The empty word ω is the identity of $\mathbb{F}_{\mathcal{A}}$.
- The product of two reduced words is the concatenation follows by simplifications if needed.

Example

Let $\mathcal{A}=\{a, b, c\}, x=a a b^{-1}$ and $y=b a^{-1} c$, then

$$
\begin{gathered}
x y=a a b^{-1} b a^{-1} c \\
x y=a a a^{-1} c \\
x y=a c .
\end{gathered}
$$

Remark

- Every element of $\left(\mathcal{A} \cup \mathcal{A}^{-1}\right)^{*}$ can be seen as an element of $\mathbb{F}_{\mathcal{A}}$ by interpreting concatenation as the multiplication of $\mathbb{F}_{\mathcal{A}}$.
- There is length function $|\cdot|: \mathbb{F}_{\mathcal{A}} \rightarrow \mathbb{N}$ that returns the number of letters in a reduced word. The empyt word has length 0.

Group actions

Let X be a set and G a group. A function

$$
\begin{aligned}
\cdot: G \times X & \longrightarrow \\
(g, x) & \longmapsto g \cdot x
\end{aligned}
$$

is said to be a group action if

- e $\cdot x=x$ for all $x \in X$, where e is the identity of the group,
- $g \cdot(h \cdot x)=(g h) \cdot x$ for all $x \in X$ and $g, h \in G$.

Alternatively, a group action can be described as a family of functions $\left\{\eta_{g}: X \rightarrow X\right\}_{g \in G}$ such that

- $\eta_{e}=I d_{X}$;
- $\eta_{g} \circ \eta_{h}=\eta_{g h}$ for all $g, h \in G$.

We identify the two approaches via the equation $\eta_{g}(x)=g \cdot x$ for all $x \in X$ and $g \in G$.

Partial actions

Definition

A partial action of a group G on a set X is a pair
$\Phi=\left(\left\{U_{t}\right\}_{t \in G},\left\{\phi_{t}\right\}_{t \in G}\right)$ consisting of a collection $\left\{U_{t}\right\}_{t \in G}$ of subsets of X and a collection $\left\{\phi_{t}\right\}_{t \in G}$ of bijections, $\phi_{t}: U_{t^{-1}} \rightarrow U_{t}$, such that
(i) $U_{e}=X$ and ϕ_{e} is the identity on X,
(ii) $\phi_{s}\left(U_{s^{-1}} \cap U_{t}\right)=U_{s} \cap U_{s t}$,
(iii) $\phi_{s}\left(\phi_{t}(x)\right)=\phi_{s t}(x)$ for every $x \in U_{t^{-1}} \cap U_{(s t)^{-1}}$.

If the partial action is given by the free group \mathbb{F} on a set of generators, then the partial action is semi-saturated if

$$
\phi_{s} \circ \phi_{t}=\phi_{s t}
$$

for every $s, t \in \mathbb{F}$ such that $|s t|=|s|+|t|$, and orthogonal if $U_{a} \cap U_{b}=\emptyset$ for a, b in the set of generator with $a \neq b$.

Examples of partial actions

Example (Restriction of actions)

Suppose that $\eta=\left\{\eta_{g}: Y \rightarrow Y\right\}_{g \in G}$ is an action of a group G on a set Y. Given $X \subseteq Y$, we will restrict η to X. Unless X is G-invariant (ie, $\eta_{g}(X)=X$ for all $g \in G$), we do not obtain an action. Nevertheless, we always obtain a partial action as follows: for each $t \in G$, we define $U_{t}=X \cap \eta_{t}(X)$ and $\phi_{t}: U_{t^{-1}} \rightarrow U_{t}$ by $\phi_{t}(x)=\eta_{t}(x)$. Then $\left(\left\{U_{t}\right\}_{t \in G},\left\{\phi_{t}\right\}_{t \in G}\right)$ is a partial action.

Example (Graphs)

Let \mathcal{E} be a graph and $\partial \mathcal{E}$ its boundary path space. Let also \mathbb{F} be the free group generated by ε^{1}. We identify finite paths as elements of \mathbb{F}. We will define a partial action $\left(\left\{U_{t}\right\}_{t \in \mathbb{F}},\left\{\phi_{t}\right\}_{t \in \mathbb{F}}\right)$ of \mathbb{F} on $\partial \mathcal{E}$, which is orthogonal and semi-saturated. The main idea is that $e \in E^{1}$ acts by adding e at the beginning of path and e^{-1} acts by removing e from the beginning of a path.

Example (Graphs - continued)

We divide the definition of U_{t} in a few cases:

- $U_{\omega}=\partial \varepsilon$,
- $U_{\alpha}=\{\alpha \mu \in \partial \varepsilon\}$ for $\alpha \in \varepsilon^{\geq 1}$,
- $U_{\beta^{-1}}=\{\mu \in \partial \mathcal{E} \mid \boldsymbol{s}(\mu)=r(\beta)\}$ for $\beta \in \mathcal{E}^{\geq 1}$,
- $U_{\alpha \beta^{-1}}=\{\alpha \mu \in \partial \varepsilon\}$ for $\alpha, \beta \in \mathcal{E}^{\geq 1}$ such that $r(\alpha)=r(\beta)$ and $\alpha \beta^{-1}$ is in reduced form in \mathbb{F},
- $U_{t}=\emptyset$ for all other cases.

Similarly we divide the definition of ϕ_{t} in a few cases

- $\phi_{\omega}=l d_{\partial \varepsilon}$,
- $\phi_{\alpha}(\mu)=\alpha \mu$ for $\alpha \in \mathcal{E}^{\geq 1}$,
- $\phi_{\beta^{-1}}(\beta \mu)=\mu$ for $\beta \in \mathcal{E}^{\geq 1}$,
- $\phi_{\alpha \beta^{-1}}(\beta \mu)=\alpha \mu$ for $\alpha, \beta \in \mathcal{E}^{\geq 1}$ such that $r(\alpha)=r(\beta)$ and $\alpha \beta^{-1}$ is in reduced form in \mathbb{F},
- ϕ_{t} is the empty function for all other cases.

The transformation groupoid

Let $\Phi=\left(\left\{U_{t}\right\}_{t \in G},\left\{\phi_{t}\right\}_{t \in G}\right)$ be a partial action of G on a set X. Define the transformation groupoid as the set

$$
G \ltimes_{\Phi} X=\left\{(x, t, y) \in X \times G \times X \mid y \in U_{t^{-1}} \text { and } x=\phi_{t}(y)\right\}
$$

with operations

$$
(x, t, y)(y, s, z)=(x, t s, z)
$$

and

$$
(x, t, y)^{-1}=\left(y, t^{-1}, y\right)
$$

where $(x, t, y),(y, s, z) \in G \ltimes_{\Phi} X$.

Remark

Note that the information of a triple $(x, t, y) \in G \ltimes_{\Phi} X$ is completely encoded in the pair (t, y) or (x, t).

Topological partial actions

Suppose now that X is a topological space and for simplicity suppose that G is a discrete group. A topological partial action of G on X is a partial action $\Phi=\left(\left\{U_{t}\right\}_{t \in G},\left\{\phi_{t}\right\}_{t \in G}\right)$ such that for all $t \in G, U_{t}$ is open and ϕ_{t} is a homeomorphism.

On $G \ltimes_{\Phi} X$ we put the topology induced by the product topology $X \times G \times X$. If X is a Stone space, then $G \ltimes_{\Phi} X$ is a Hausdorff ample groupoid.

Example

The partial action of \mathbb{F} on $\partial \varepsilon$ defined above is a topological partial action and $\mathbb{F} \ltimes_{\Phi} \partial \varepsilon$ is a Hausdoff ample groupoid. In fact it isomorphic to graph groupoid $\mathcal{G}_{\varepsilon}$ seen in part 1 via $\left(\alpha \mu, \alpha \beta^{-1}, \beta \mu\right) \mapsto(\alpha \mu,|\alpha|-|\beta|, \beta \mu)$.

Algebraic partial actions

Let R be a commutative unital ring and \mathcal{A} an R-algebra. We say that a partial action $\tau=\left(\left\{D_{t}\right\}_{t \in G},\left\{\tau_{t}\right\}_{t \in G}\right)$ of a group G on \mathcal{A} is an algebraic partial action if for every $t \in G, D_{t}$ is a (two-sided) ideal of \mathcal{A} and τ_{t} is an isomorphism of R-algebras.

We will define an R-algebra from an algebraic partial action. This algebra is sometimes called a partial skew group ring and other times an (algebraic) partial crossed product.

As an R-module, we define

$$
\mathcal{A} \rtimes_{\tau} G=\bigoplus_{t \in G} D_{t}
$$

An element of $\mathcal{A} \rtimes_{\tau} G$ will be written as a finite sum $\sum_{t \in G} a_{t} \delta_{t}$, where $a_{t} \in D_{t}$ and δ_{t} can be thought as a symbol to indicate the coordinate t.

In order to define the product in $\mathcal{A} \rtimes_{\tau} G$, it is enough to understand what happens for elements of the form $a_{s} \delta_{s}$ and $b_{t} \delta_{t}$ and then extend it in a bilinear way.

If we were to copy partial group rings, we would define the product as

$$
a_{s} \delta_{s} \cdot b_{t} \delta_{t}=a_{s} \tau_{s}\left(b_{t}\right) \delta_{s t},
$$

however, we do not know whether $b_{t} \in D_{s^{-1}}$. To fix this, we observe that we can apply $\tau_{s^{-1}}$ on a_{s} and that $\tau_{s^{-1}}\left(a_{s}\right) \in D_{s^{-1}}$. Since $D_{s^{-1}}$ is an ideal, we have that $\tau_{s^{-1}}\left(a_{s}\right) b_{t} \in D_{s^{-1}}$, on which we can apply τ_{s}. We then define the product as

$$
a_{s} \delta_{s} \cdot b_{t} \delta_{t}=\tau_{s}\left(\tau_{s^{-1}}\left(a_{s}\right) b_{t}\right) \delta_{s t} .
$$

Remark

This product is not always associative.

Theorem

Let $\tau=\left(\left\{D_{t}\right\}_{t \in G},\left\{\tau_{t}\right\}_{t \in G}\right)$ be an algebraic partial action such that D_{t} is idempotent for all $t \in G$ (that is, $D_{t} D_{t}=D_{t}$). Then the product on $\mathcal{A} \rtimes_{\tau}$ G defined above is associative.

Definition

Let S be a ring and F a family of idempotents of S. We say that F is a family of local units for S if for every $n \in \mathbb{N}$ and s_{1}, \ldots, s_{n}, there exists $f \in F$ such that $f s_{i}=s_{i} f=s_{i}$ for all $i \in\{1, \ldots, n\}$.

Remark

If S has a family of local units then S is idempotent.

Dual partial action

Let G be a discrete group and X be a Hausdorff space with a basis of compact-set (ie, a Stone space). Given a topological partial action $\Phi=\left(\left\{U_{t}\right\}_{t \in G},\left\{\phi_{t}\right\}_{t \in G}\right)$ of G on X, suppose that U_{t} is clopen for all $t \in G$. From this, we can build an algebraic partial action of G on $\mathrm{Lc}(X, R)$, which we call a dual partial action.

For each $t \in G$, we set $D_{t}=\operatorname{Lc}\left(U_{t}, R\right)$ seen as an ideal of $\operatorname{Lc}(X, R)$ by a extending a function $f: U_{t} \rightarrow R$ to $f: X \rightarrow R$ by defining it to be 0 outside U_{t}. Because U_{t} is clopen this extension is indeed in $\operatorname{Lc}(X, R)$. We observe that $F=\left\{1_{\mathrm{V}} \mid V \subseteq U_{t}\right.$ is compact-open $\}$ is a family of local units for D_{t}.
We also define $\hat{\phi}_{t}: D_{t^{-1}} \rightarrow D_{t}$ by $\hat{\phi}_{t}(f)=f \circ \phi_{t^{-1}}$.

Proposition

$\hat{\Phi}=\left(\left\{D_{t}\right\}_{t \in G},\left\{\hat{\phi}_{t}\right\}_{t \in G}\right)$ defined as above is an algebraic partial action such that D_{t} is idempotent for all t.

Theorem

With the above construction $A_{R}\left(G \ltimes_{\Phi} X\right) \cong \operatorname{Lc}(X, R) \rtimes_{\hat{\Phi}} G$.

Idea of the proof.

Given $f \in A_{R}\left(G{\ltimes_{\Phi}} X\right)$, for each $t \in G$, we define $f_{t}: U_{t} \rightarrow R$ by $f_{t}(x)=f\left(x, t, \phi_{t^{-1}}(x)\right)$. The map given by

$$
f \mapsto \sum_{t \in G} f_{t} \delta_{t}
$$

is then a well-defined homomorphism of R-algebras.
For the inverse, we send a sum $\sum_{t \in G} f_{t} \delta_{t}$ to the function $f: G \ltimes_{\Phi} X \rightarrow R$ given by $f(x, t, y)=f_{t}(x)$.

Partial actions from labelled spaces

Given a labelled space ($\mathcal{E}, \mathcal{L}, \mathcal{B}$), that we have a topological correspondence (E^{1}, s, r) from F^{0} to E^{0}, where $E^{0}=X_{\omega}$, $F^{0}=X_{\omega} \cup\{\emptyset\}$ its one-point extension and $E^{1}=\bigsqcup_{a \in \mathcal{A}} X_{a}$ with the disjoint topology. We denote an element of E^{1} by $e_{\mathcal{F}}^{a}$ for $a \in \mathcal{A}$ and $\mathcal{F} \in X_{a}$. And we have a boundary path space ∂E.

Analogous to the graph case we can define

- $U_{\omega}=\partial E$,
- $U_{\alpha}=\left\{e_{\mathcal{F}_{1}}^{\alpha_{1}} \cdots e_{\mathcal{F}_{n}}^{\alpha_{n}} \mu \in \partial E\right\}$ for $\alpha \in \mathcal{L}^{n}$ with $n \geq 1$,
- $U_{\beta^{-1}}=\{\mu \in \partial E \mid r(\beta) \in \boldsymbol{s}(\mu)\}$ for $\beta \in \mathcal{L}^{\geq 1}$,
- $U_{\alpha \beta-1}=\left\{e_{\mathcal{F}_{1}}^{\alpha_{1}} \cdots e_{\mathcal{F}_{n}}^{\alpha_{n}} \mu \in \partial E \mid r(\beta) \in \boldsymbol{s}(\mu)\right\}$ for $\alpha, \beta \in \mathcal{L}^{\geq 1}$ such that $|\alpha|=n, r(\alpha) \cap r(\beta) \neq \emptyset$ and $\alpha \beta^{-1}$ is in reduced form in \mathbb{F},
- $U_{t}=\emptyset$ for all other cases.

Remark

For all $t \in \mathbb{F} \backslash\{\omega\}$, we have that U_{t} is compact-open.

For the maps, we can prove that $\phi_{\alpha^{-1}}: U_{\alpha} \rightarrow U_{\alpha^{-1}}$ given by $\phi_{\alpha^{-1}}\left(e_{\mathcal{F}_{1}}^{\alpha_{1}} \cdots e_{\mathcal{F}_{n}}^{\alpha_{n}} \mu\right)=\mu$ is a well-defined homeomorphism.

Because of the filters $\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}$ the description of the inverse is much more technical. Nevertheless, we can define $\phi_{\alpha}=\left(\phi_{\alpha^{-1}}\right)^{-1}$ and $\phi_{\alpha \beta^{-1}}=\phi_{\alpha} \circ \phi_{\beta^{-1}}$, whenever it makes sense.

Theorem

The construction above results in an orthogonal semi-saturated partial action Φ of \mathbb{F} on ∂E such that $\Gamma(E) \cong \mathbb{F} \ltimes_{\phi} \partial E$.

Corollary

$L_{R}(\mathcal{E}, \mathcal{L}, \mathcal{B}) \cong \operatorname{Lc}(\partial E, R) \rtimes_{\hat{\phi}} \mathbb{F}$.

Theorem

Let X be a Stone space and let $\rho=\left(\left\{V_{t}\right\}_{t \in \mathbb{F}},\left\{\rho_{t}\right\}_{t \in \mathbb{F}}\right)$ be a semi-saturated, orthogonal topological partial action of a free group \mathbb{F} on X such that V_{t} is compact-open for all $t \in \mathbb{F} \backslash\{\omega\}$. Then there exists a labelled space $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ and a homeomorphism $f: X \rightarrow \partial E$, where ∂E, such that f is equivariant with respect to the actions ρ and Φ given by the above theorem. In particular $\mathbb{F} \ltimes_{\rho} X$ and $\mathbb{F} \ltimes_{\varphi} \partial E$ are isomorphic as topological groupoids.

Idea of the proof.

- \mathcal{A} is the set of generators of \mathbb{F},
- $\varepsilon^{0}=X$,
- $\mathcal{E}^{1}=\left\{(a, x) \in \mathcal{A} \times X \mid x \in V_{a}\right\}$,
- $s(a, x)=x, r(a, x)=\rho_{a^{-1}}(x)$,
- $\mathcal{L}(a, x)=a$,
- \mathcal{B} is the set of compact-open subsets of X.

Corollary

Let R be a commutative unital ring and \mathcal{A} be a torsion-free commutative R-algebra generated by its idempotents elements. Let also $\tau=\left(\left\{D_{t}\right\}_{t \in \mathbb{F}},\left\{\tau_{t}\right\}_{t \in \mathbb{F}}\right)$ be a semi-saturated, orthogonal algebraic partial action of a free group \mathbb{F} on \mathcal{A} such that D_{t} is unital for every $t \in \mathbb{F} \backslash\{\omega\}$. Then, there exists a labelled space $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ such that $\mathcal{A} \rtimes_{\tau} \mathbb{F} \cong L_{R}(\mathcal{E}, \mathcal{L}, \mathcal{B})$.

Idea of the proof.

We have that $\mathcal{A} \cong \operatorname{Lc}(X, R)$ for some Stone space X. For $t \in \mathbb{F} \backslash\{\omega\}$, because D_{t} is unital, we have $D_{t} \cong \operatorname{Lc}\left(U_{t}, R\right)$ for some compact-open U_{t} subset of X.
We can then define partial action $\rho=\left(\left\{U_{t}\right\}_{t \in \mathbb{F}},\left\{\rho_{t}\right\}_{t \in \mathbb{F}}\right)$ such that its dual $\hat{\rho}$ is essentially the same as τ. Hence, for the labelled space $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ of the previous theorem, we get

$$
\mathcal{A} \rtimes_{\tau} \mathbb{F} \cong \operatorname{Lc}(X, R) \rtimes_{\hat{\rho}} \mathbb{F} \cong L_{R}(\mathcal{E}, \mathcal{L}, \mathcal{B})
$$

References

Q R. Exel.
Partial dynamical systems, Fell bundles and applications, volume 224 of Mathematical Surveys and Monographs.
American Mathematical Society, Providence, RI, 2017.
回 V. M. Beuter and D. Gonçalves.
The interplay between Steinberg algebras and skew rings.
J. Algebra, 497:337-362, 2018
(ing Goava, G. G. de Castro, D. Gonçalves, and D. W. van Wyk. Leavitt path algebras of labelled graphs. Arxiv, arXiv:2106.06036 [math.RA], 2021.
E. G. de Castro and E. J. Kang.
C^{*}-algebras of generalized Boolean dynamical systems as partial crossed products
Arxiv, arXiv:2202.02008 [math.OA], 2022.

Thank you!

