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Free groups
Given a set A, let us describe the construction of the free group FA

generated by A.
If A = ∅, we let F∅ be the trivial group.
For A 6= ∅, we consider a set of “inverses” for A. It is just a set
denoted by A−1 = {a−1 | a ∈ A} such that A ∩A−1 = ∅.
(A ∪A−1)∗ denotes the set of all words with letters in A ∪A−1,
including the empty word ω.
A word in (A ∪A−1)∗ is said to be reduced if no letter in A is
adjacent to its inverse.
We let FA be the set of all reduced words, which includes the
empty word.

Example

Let A = {a,b, c}, then aab−1b−1a−1c ∈ FA, but aab−1ba−1c /∈ FA.
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We now describe the product in FA:
The empty word ω is the identity of FA.
The product of two reduced words is the concatenation follows by
simplifications if needed.

Example

Let A = {a,b, c}, x = aab−1 and y = ba−1c, then

xy = aab−1ba−1c

xy = aaa−1c

xy = ac.

Remark
Every element of (A ∪A−1)∗ can be seen as an element of FA by
interpreting concatenation as the multiplication of FA.
There is length function | · | : FA → N that returns the number of
letters in a reduced word. The empyt word has length 0.
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Group actions

Let X be a set and G a group. A function

· : G × X −→ X
(g, x) 7−→ g · x

is said to be a group action if
e · x = x for all x ∈ X , where e is the identity of the group,
g · (h · x) = (gh) · x for all x ∈ X and g,h ∈ G.

Alternatively, a group action can be described as a family of functions
{ηg : X → X}g∈G such that

ηe = IdX ;
ηg ◦ ηh = ηgh for all g,h ∈ G.

We identify the two approaches via the equation ηg(x) = g · x for all
x ∈ X and g ∈ G.

Gilles G. de Castro (UFSC) Groupoid algebras - part 4 Cimpa School Floripa 2022 4 / 20



Partial actions

Definition
A partial action of a group G on a set X is a pair
Φ = ({Ut}t∈G, {φt}t∈G) consisting of a collection {Ut}t∈G of subsets of
X and a collection {φt}t∈G of bijections, φt : Ut−1 → Ut , such that

(i) Ue = X and φe is the identity on X ,
(ii) φs(Us−1 ∩ Ut ) = Us ∩ Ust ,
(iii) φs(φt (x)) = φst (x) for every x ∈ Ut−1 ∩ U(st)−1 .

If the partial action is given by the free group F on a set of generators,
then the partial action is semi-saturated if

φs ◦ φt = φst

for every s, t ∈ F such that |st | = |s|+ |t |, and orthogonal if
Ua ∩ Ub = ∅ for a,b in the set of generator with a 6= b.
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Examples of partial actions

Example (Restriction of actions)
Suppose that η = {ηg : Y → Y}g∈G is an action of a group G on a set
Y . Given X ⊆ Y , we will restrict η to X . Unless X is G-invariant (ie,
ηg(X ) = X for all g ∈ G), we do not obtain an action. Nevertheless, we
always obtain a partial action as follows: for each t ∈ G, we define
Ut = X ∩ ηt (X ) and φt : Ut−1 → Ut by φt (x) = ηt (x). Then
({Ut}t∈G, {φt}t∈G) is a partial action.

Example (Graphs)
Let E be a graph and ∂E its boundary path space. Let also F be the
free group generated by E1. We identify finite paths as elements of F.
We will define a partial action ({Ut}t∈F, {φt}t∈F) of F on ∂E, which is
orthogonal and semi-saturated. The main idea is that e ∈ E1 acts by
adding e at the beginning of path and e−1 acts by removing e from the
beginning of a path.
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Example (Graphs - continued)
We divide the definition of Ut in a few cases:

Uω = ∂E,
Uα = {αµ ∈ ∂E} for α ∈ E≥1,
Uβ−1 = {µ ∈ ∂E | s(µ) = r(β)} for β ∈ E≥1,

Uαβ−1 = {αµ ∈ ∂E} for α, β ∈ E≥1 such that r(α) = r(β) and αβ−1

is in reduced form in F,
Ut = ∅ for all other cases.

Similarly we divide the definition of φt in a few cases
φω = Id∂E,
φα(µ) = αµ for α ∈ E≥1,
φβ−1(βµ) = µ for β ∈ E≥1,

φαβ−1(βµ) = αµ for α, β ∈ E≥1 such that r(α) = r(β) and αβ−1 is
in reduced form in F,
φt is the empty function for all other cases.
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The transformation groupoid

Let Φ = ({Ut}t∈G, {φt}t∈G) be a partial action of G on a set X . Define
the transformation groupoid as the set

G nΦ X = {(x , t , y) ∈ X ×G × X | y ∈ Ut−1 and x = φt (y)}

with operations
(x , t , y)(y , s, z) = (x , ts, z)

and
(x , t , y)−1 = (y , t−1, y),

where (x , t , y), (y , s, z) ∈ G nΦ X .

Remark
Note that the information of a triple (x , t , y) ∈ G nΦ X is completely
encoded in the pair (t , y) or (x , t).
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Topological partial actions

Suppose now that X is a topological space and for simplicity suppose
that G is a discrete group. A topological partial action of G on X is a
partial action Φ = ({Ut}t∈G, {φt}t∈G) such that for all t ∈ G, Ut is open
and φt is a homeomorphism.

On G nΦ X we put the topology induced by the product topology
X ×G × X . If X is a Stone space, then G nΦ X is a Hausdorff ample
groupoid.

Example
The partial action of F on ∂E defined above is a topological partial
action and F nΦ ∂E is a Hausdoff ample groupoid. In fact it isomorphic
to graph groupoid GE seen in part 1 via
(αµ, αβ−1, βµ) 7→ (αµ, |α| − |β|, βµ).
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Algebraic partial actions

Let R be a commutative unital ring and A an R-algebra. We say that a
partial action τ = ({Dt}t∈G, {τt}t∈G) of a group G on A is an algebraic
partial action if for every t ∈ G, Dt is a (two-sided) ideal of A and τt is
an isomorphism of R-algebras.

We will define an R-algebra from an algebraic partial action. This
algebra is sometimes called a partial skew group ring and other times
an (algebraic) partial crossed product.

As an R-module, we define

Aoτ G =
⊕
t∈G

Dt .

An element of Aoτ G will be written as a finite sum
∑

t∈G atδt , where
at ∈ Dt and δt can be thought as a symbol to indicate the coordinate t .
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In order to define the product in Aoτ G, it is enough to understand
what happens for elements of the form asδs and btδt and then extend it
in a bilinear way.

If we were to copy partial group rings, we would define the product as

asδs · btδt = asτs(bt )δst ,

however, we do not know whether bt ∈ Ds−1 . To fix this, we observe
that we can apply τs−1 on as and that τs−1(as) ∈ Ds−1 . Since Ds−1 is an
ideal, we have that τs−1(as)bt ∈ Ds−1 , on which we can apply τs. We
then define the product as

asδs · btδt = τs(τs−1(as)bt )δst .

Remark
This product is not always associative.
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Theorem
Let τ = ({Dt}t∈G, {τt}t∈G) be an algebraic partial action such that Dt is
idempotent for all t ∈ G (that is, DtDt = Dt ). Then the product on
Aoτ G defined above is associative.

Definition
Let S be a ring and F a family of idempotents of S. We say that F is a
family of local units for S if for every n ∈ N and s1, . . . , sn, there exists
f ∈ F such that fsi = si f = si for all i ∈ {1, . . . ,n}.

Remark
If S has a family of local units then S is idempotent.
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Dual partial action
Let G be a discrete group and X be a Hausdorff space with a basis of
compact-set (ie, a Stone space). Given a topological partial action
Φ = ({Ut}t∈G, {φt}t∈G) of G on X , suppose that Ut is clopen for all
t ∈ G. From this, we can build an algebraic partial action of G on
Lc(X ,R), which we call a dual partial action.

For each t ∈ G, we set Dt = Lc(Ut ,R) seen as an ideal of Lc(X ,R) by
a extending a function f : Ut → R to f : X → R by defining it to be 0
outside Ut . Because Ut is clopen this extension is indeed in Lc(X ,R).
We observe that F = {1V | V ⊆ Ut is compact-open} is a family of
local units for Dt .

We also define φ̂t : Dt−1 → Dt by φ̂t (f ) = f ◦ φt−1 .

Proposition

Φ̂ = ({Dt}t∈G, {φ̂t}t∈G) defined as above is an algebraic partial action
such that Dt is idempotent for all t .
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Theorem
With the above construction AR(G nΦ X ) ∼= Lc(X ,R) oΦ̂ G.

Idea of the proof.
Given f ∈ AR(G nΦ X ), for each t ∈ G, we define ft : Ut → R by
ft (x) = f (x , t , φt−1(x)). The map given by

f 7→
∑
t∈G

ftδt

is then a well-defined homomorphism of R-algebras.

For the inverse, we send a sum
∑

t∈G ftδt to the function
f : G nΦ X → R given by f (x , t , y) = ft (x).
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Partial actions from labelled spaces
Given a labelled space (E,L,B), that we have a topological
correspondence (E1, s, r) from F 0 to E0, where E0 = Xω,
F 0 = Xω ∪ {∅} its one-point extension and E1 =

⊔
a∈A Xa with the

disjoint topology. We denote an element of E1 by ea
F for a ∈ A and

F ∈ Xa. And we have a boundary path space ∂E .

Analogous to the graph case we can define
Uω = ∂E ,
Uα = {eα1

F1
· · · eαn

Fn
µ ∈ ∂E} for α ∈ Ln with n ≥ 1,

Uβ−1 = {µ ∈ ∂E | r(β) ∈ s(µ)} for β ∈ L≥1,
Uαβ−1 = {eα1

F1
· · · eαn

Fn
µ ∈ ∂E | r(β) ∈ s(µ)} for α, β ∈ L≥1 such that

|α| = n, r(α) ∩ r(β) 6= ∅ and αβ−1 is in reduced form in F,
Ut = ∅ for all other cases.

Remark
For all t ∈ F \ {ω}, we have that Ut is compact-open.
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For the maps, we can prove that φα−1 : Uα → Uα−1 given by
φα−1(eα1

F1
· · · eαn

Fn
µ) = µ is a well-defined homeomorphism.

Because of the filters F1, . . . ,Fn the description of the inverse is much
more technical. Nevertheless, we can define φα = (φα−1)−1 and
φαβ−1 = φα ◦ φβ−1 , whenever it makes sense.

Theorem
The construction above results in an orthogonal semi-saturated partial
action Φ of F on ∂E such that Γ(E) ∼= F nΦ ∂E.

Corollary
LR(E,L,B) ∼= Lc(∂E ,R) oΦ̂ F.
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Theorem
Let X be a Stone space and let ρ = ({Vt}t∈F, {ρt}t∈F) be a
semi-saturated, orthogonal topological partial action of a free group F
on Xsuch that Vt is compact-open for all t ∈ F \ {ω}. Then there exists
a labelled space (E,L,B) and a homeomorphism f : X → ∂E, where
∂E, such that f is equivariant with respect to the actions ρ and Φ given
by the above theorem. In particular F nρ X and F nϕ ∂E are
isomorphic as topological groupoids.

Idea of the proof.
A is the set of generators of F,
E0 = X ,
E1 = {(a, x) ∈ A× X | x ∈ Va},
s(a, x) = x , r(a, x) = ρa−1(x),
L(a, x) = a,
B is the set of compact-open subsets of X .
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Corollary
Let R be a commutative unital ring and A be a torsion-free
commutative R-algebra generated by its idempotents elements. Let
also τ = ({Dt}t∈F, {τt}t∈F) be a semi-saturated, orthogonal algebraic
partial action of a free group F on A such that Dt is unital for every
t ∈ F \ {ω}. Then, there exists a labelled space (E,L,B) such that
Aoτ F ∼= LR(E,L,B).

Idea of the proof.
We have that A ∼= Lc(X ,R) for some Stone space X . For t ∈ F \ {ω},
because Dt is unital, we have Dt ∼= Lc(Ut ,R) for some compact-open
Ut subset of X .

We can then define partial action ρ = ({Ut}t∈F, {ρt}t∈F) such that its
dual ρ̂ is essentially the same as τ . Hence, for the labelled space
(E,L,B) of the previous theorem, we get

Aoτ F ∼= Lc(X ,R) oρ̂ F ∼= LR(E,L,B).
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Thank you!
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