On groupoid algebras with applications to Leavitt labelled path algebras - part 3

Gilles Gonçalves de Castro

Universidade Federal de Santa Catarina

Cimpa School
From Dynamics to Algebra and Representation Theory and Back
February 9th, 2022

Cuntz-Krieger algebras and generalisations

- Cuntz algebras (1977) Simple infinite C*-algebras.
- Cuntz-Krieger algebras (1980) C*-algebras for topological Markov chains.
- Graph C*-algebras (Kumjian, Pask, Raeburn, Renault 1997).
- C*-Algebras for two-sided subshifts (Matsumoto 1997, Carlsen-Matsumoto 2004)
- Exel-Laca algebras for infinite matrices of 0-1 (1999).
- Ultragraph C*-algebras (Tomforde 2003).
- C*-algebras of labelled graphs (Bates, Pask 2007).
- C*-algebras for one-sided subshifts (Carlsen 2008).
- C*-algebras of Boolean dynamical systems (Carlsen, Ortega, Pardo - 2017).
- C*-algebras of generalised Boolean dynamical systems (Carlsen, Kang - 2020).

Leavitt path algebras

- Leavitt rings/algebras (Late 1950s, early 1960s) rings without the IBN property.
- Purely algebraic analogue of Cuntz-Krieger algebras (Ara, Gonzáles-Barros, Goodearl, Pardo - 2004).
- Leavitt path algebras for graphs (Ara, Pino 2005).
- Algebras for Boolean dynamical systems (Clark, Exel, Pardo -2018).
- Leavitt path algebras for ultragraphs (Imanfar, Pourabbas, Larki -2020).
- Leavitt path algebras for labelled graphs (Boava, de C., Gonçalves, van Wyk - 2021*) - includes both Leavitt path algebras for graphs and commutative algebras generated by idempotents.

Boolean algebras

A (concrete) Boolean algebra is a non-empty family ${\mathfrak B}$ of subsets of a given set ${\mathcal X}$ such that

- $A \cup B \in \mathcal{B}$,
- $A \cap B \in \mathcal{B}$.
- $A \setminus B \in \mathcal{B}$.

for all $A, B \in \mathcal{B}$.

Remark

- $\emptyset \in \mathcal{B}$ because $A \setminus A = \emptyset$ for a given $A \in \mathcal{B}$.
- We do not assume here that $X \in \mathcal{B}$ as it is usually asked in the definition of a Boolean algebra. The definition above is then sometimes called a generalized Boolean algebra.

Example

Let X be any set and \mathcal{B} be the family of all finite subsets of X. Then \mathcal{B} is a Boolean algebra.

Example

Let X be a Hausdorff space. The family ${\mathfrak B}$ of compact-open subsets of X is a Boolean algebra. This happens because in a Hausdorff spaces, compact subsets are closed.

Remark

There are other ways of defining Boolean algebras:

- Algebraically: A Boolean algebra is a set \mathcal{B} with binary operations \cup, \cap, \setminus satisfying a certain list of axioms.
- Using order theory: A Boolean algebra is a relatively complemented distributive lattice with least element.

Stone duality

Theorem

Every Boolean algebra is isomorphic to the Boolean algebra of compact-open subsets of a Hausdorff space with a basis of compact-open sets.

Idea of the proof.

Let $\mathfrak B$ be a Boolean algebra. A filter in $\mathfrak B$ is a set $\mathcal F\subseteq \mathfrak B$ such that $A\cap B\in \mathcal F$ for all $A,B\in \mathcal F$ and whenever $B\in \mathfrak B$ is such that $A\subseteq B$ for some $A\in \mathcal F$, we have that $B\in \mathcal F$. An ultrafilter in $\mathfrak B$ is a proper maximal filter.

The Stone dual of $\mathfrak B$ is the set X of all ultrafilters with a basis of compact-open sets given by sets of the form $U_A = \{\mathcal F \in X \mid A \in \mathcal F\}$ for $A \in \mathfrak B$. In fact, all compact-open sets of X are of the form U_A for some A and the map $A \mapsto U_A$ is a Boolean algebra isomorphism.

Theorem

If X is Hausdorff space with a basis of compact-open set and $\mathbb B$ is the Boolean algebra of compact-open subsets of X then X is homeomorphic to the Stone dual of $\mathbb B$.

Idea of the proof.

Given $x \in X$, the set $\mathcal{F}_x = \{A \in \mathcal{B} \mid x \in A\}$ is an ultrafilter.

Because \mathcal{B} is a basis for X, every ultrafilter of \mathcal{B} is of the form \mathcal{F}_x for some x.

The homeomorphism is given by $x \mapsto \mathcal{F}_x$.

Definition

A Hausdorff space with a basis of compact-open sets will be called a Stone space.

Commutative algebras generated by idempotents

Let R be a commutative unital ring and A a commutative R-algebra. On the set E(A) of idempotents of A we can define a structure of Boolean algebra by

- $e \cup f = e + f ef$.
- $e \cap f = ef$
- \bullet $e \setminus f = e ef$,

for $e, f \in E(A)$.

Theorem

Suppose that A is generated by E(A) and that for all $r \in R$ and $e \in E(A)$ we have that re = 0 implies r = 0 or e = 0. Let X be the Stone dual of E(A), then $A \cong Lc(X, R)$, where Lc(X, R) is the set of locally constant functions from X to R with compact support.

A universal property

Theorem

Let ${\mathbb B}$ be a Boolean algebra with Stone dual X and R a commutative unital ring. Then, Lc(X,R) is isomorphic to the universal R-algebra generated by a family $\{p_A \mid A \in {\mathbb B}\}$ such that

- \bullet $p_{\emptyset}=0$,
- $\bullet \ p_{A \cup B} = p_A + p_B p_{A \cap B} \text{ for all } A, B \in \mathfrak{B},$
- $p_{A \cap B} = p_A p_B$ for all $A, B \in \mathcal{B}$.

Remark

That $p_{A \setminus B} = p_A - p_{A \cap B}$ for all $A, B \in \mathcal{B}$ follows as a consequence of the other relations.

Example

Suppose that X has the discrete topology. For $x \in X$, let $p_X = p_{\{x\}}$. Then $p_X p_Y = 0$ if $x \neq y$. A compact-open set A of X is just a finite set. If $A = \{x_1, \dots, x_n\}$, then $p_A = p_{X_1} + \dots + p_{X_n}$.

Labelled graphs

- By a (directed) graph we mean a quadruple $\mathcal{E} = (\mathcal{E}^0, \mathcal{E}^1, r, s)$ where $\mathcal{E}^0, \mathcal{E}^1$ are sets, $s : \mathcal{E}^1 \to \mathcal{E}^0$ and $r : \mathcal{E}^1 \to \mathcal{E}^0$ are maps.
- Given a set \mathcal{A} , which is thought as a set of letters, an (edge-)labelling on a graph \mathcal{E} is an onto map $\mathcal{L}: \mathcal{E}^1 \to \mathcal{A}$.
- We call the pair $(\mathcal{E}, \mathcal{L})$ a labelled graph.
- A path λ on \mathcal{E} is a sequence (finite or infinite) of edges $\lambda = \lambda_1 \dots \lambda_n(\dots)$ such that $r(\lambda_i) = s(\lambda_{i+1}) \ \forall i$.
- We can extend the map \mathcal{L} to any path λ by $\mathcal{L}(\lambda) = \mathcal{L}(\lambda_1) \dots \mathcal{L}(\lambda_n)(\dots)$.
- An element $\alpha = \mathcal{L}(\lambda)$ is called a labelled path. We also include the empty word ω as a labelled path.
- For $A \subseteq \mathcal{E}^0$, we define $\mathcal{L}(A\mathcal{E}^1) = {\mathcal{L}(e) \mid e \in \mathcal{E}^1, \ s(e) \in A}$.

For $\alpha \in \mathcal{L}^*$ and $A \in \mathcal{P}(\mathcal{E}^0)$, the relative range of α with respect to A is

$$r(A, \alpha) = \{r(\lambda) \mid \lambda \in \mathcal{E}^*, \ \mathcal{L}(\lambda) = \alpha, \ s(\lambda) \in A\}$$

if $\alpha \in \mathcal{L}^{\geq 1}$ and $r(A, \omega) = A$ if $\alpha = \omega$. We define $r(\alpha) := r(\mathcal{E}^0, \alpha)$.

Example

- The labelled paths are all finite and infinite sequences of 0's and 1's such that between two 1's there must be an even number of 0's (even shift).
- $r(\{v_1, v_2\}, 1) = \{v_1, v_3\}, \quad r(\{v_3\}, 1) = \emptyset, \quad r(1) = \{v_1, v_2\},$ $\mathcal{L}(\{v_2, v_3\}\mathcal{E}^1) = \{0\}.$

Labelled spaces

Definition

A (normal weakly left-resolving) labelled space is a triple $(\mathcal{E}, \mathcal{L}, \mathcal{B})$, where $(\mathcal{E}, \mathcal{L})$ is a labelled graph and $\mathcal{B} \subseteq \mathcal{P}(\mathcal{E}^0)$ is a Boolean algebra such that

- $r(\alpha) \in \mathcal{B}$ and $r(A, \alpha) \in \mathcal{B}$ for all $\alpha \in \mathcal{L}^{\geq 1}$ and $A \in \mathcal{B}$,
- $r(A \cap B, \alpha) = r(A, \alpha) \cap r(B, \alpha)$ for all $\alpha \in \mathcal{L}^{\geq 1}$ and $A, B \in \mathcal{B}$.

For each $A \in \mathcal{B}$, we let $\Delta_A = \{a \in \mathcal{A} \mid r(A, a) \neq \emptyset\}$. We say that $A \in \mathcal{B}$ is regular if for all $B \in \mathcal{B} \setminus \{\emptyset\}$ such that $B \subseteq A$, we have that $0 < |\Delta_B| < \infty$. The set of regular sets is denoted by \mathfrak{B}_{reg} .

Leavitt path algebras for labelled graphs

Definition

Let $(\mathcal{E},\mathcal{L},\mathcal{B})$ be a labelled space and R a unital commutative ring. The Leavitt labelled path algebra associated with $(\mathcal{E},\mathcal{L},\mathcal{B})$ with coefficients in R, denoted by $L_R(\mathcal{E},\mathcal{L},\mathcal{B})$, is the universal R-algebra with generators $\{p_A \mid A \in \mathcal{B}\}$ and $\{s_a,s_a^* \mid a \in \mathcal{A}\}$ subject to the relations

- (i) $p_{A\cap B}=p_Ap_B$, $p_{A\cup B}=p_A+p_B-p_{A\cap B}$ and $p_\emptyset=0$, for every $A,B\in\mathfrak{B}$;
- (ii) $p_A s_a = s_a p_{r(A,a)}$ and $s_a^* p_A = p_{r(A,a)} s_a^*$, for every $A \in \mathcal{B}$ and $a \in \mathcal{A}$;
- (iii) $s_a^* s_a = p_{r(a)}$ and $s_b^* s_a = 0$ if $b \neq a$, for every $a, b \in A$;
- (iv) $s_a s_a^* s_a = s_a$ and $s_a^* s_a s_a^* = s_a^*$ for every $a \in A$;
- (v) For every $A \in \mathcal{B}_{reg}$,

$$p_A = \sum_{a \in \mathcal{L}(A\mathcal{E}^1)} s_a p_{r(A,a)} s_a^*.$$

Graded uniqueness theorem

The Leavitt labelled path algebra $L_R(\mathcal{E}, \mathcal{L}, \mathcal{B})$ is \mathbb{Z} -graded, with grading given by

$$L_R(\mathcal{E},\mathcal{L},\mathcal{B})_n = \operatorname{span}_R\{s_\alpha p_A s_\beta^* \mid \alpha,\beta \in \mathcal{L}^*, \ A \in \mathcal{B}_\alpha \cap \mathcal{B}_\beta, \ |\alpha| - |\beta| = n\}.$$

Theorem (Graded uniqueness theorem)

If A is a \mathbb{Z} -graded ring and $\phi: L_R(\mathcal{E}, \mathcal{L}, \mathcal{B}) \to A$ is a graded ring homomorphism with $\phi(rp_A) \neq 0$ for all non-empty $A \in \mathcal{B}$ and all non-zero $r \in R$, then ϕ is injective.

Example - graph algebras

Proposition

Let \mathcal{E} be a graph and consider $\mathcal{A} = \mathcal{E}^1$, $\mathcal{L} = Id_{\mathcal{E}^1}$ and $\mathcal{B} = \{ A \subseteq \mathcal{E}^0 \mid A \text{ is finite} \}$. Then $L_R(\mathcal{E}) \cong L_R(\mathcal{E}, \mathcal{L}, \mathcal{B})$.

Idea of the proof.

We define a map $\phi: L_R(\mathcal{E}, \mathcal{L}, \mathcal{B}) \to L_R(\mathcal{E})$ by

- $\phi(p_A) = \sum_{v \in A} v$ for all $A \in \mathcal{B}$,
- $\phi(s_e) = e$, $\phi(s_e^*) = e^*$ for all $e \in \mathcal{E}^1$.

To show that ϕ is well-defined, we have to prove that ϕ preserves the relations defining $L_R(\mathcal{E},\mathcal{L},\mathcal{B})$. Most of the computations are straightforward observing that r(A,e)=r(e) if $s(e)\in A$ and $r(A,e)=\emptyset$ otherwise.

It is easy to see that the image of ϕ contains the generators of $L_R(\mathcal{E})$ so that ϕ is surjective. And injectivity follows from the graded uniqueness theorem.

Definition

Let $(\mathcal{E},\mathcal{L})$ be a labelled graph. We say that $(\mathcal{E},\mathcal{L})$ is left-resolving if for every $v \in \mathcal{E}^0$, we have that $\mathcal{L}|_{r^{-1}(v)}$ is injective. We say that $(\mathcal{E},\mathcal{L})$ is label-finite if $|\mathcal{L}^{-1}(a)| < \infty$ for every $a \in \mathcal{A}$.

Proposition

Let $(\mathcal{E}, \mathcal{L})$ be a left-resolving, label-finite, labelled graph, and let \mathcal{B} be the family of all finite subsets of \mathcal{E}^0 . Then $L_R(\mathcal{E}, \mathcal{L}, \mathcal{B}) \cong L_R(\mathcal{E})$.

Idea of the proof.

We define a map $\phi: L_R(\mathcal{E}, \mathcal{L}, \mathcal{B}) \to L_R(\mathcal{E})$ by

- $\phi(p_A) = \sum_{v \in A} v$ for all $A \in \mathcal{B}$,
- $\phi(s_a) = \sum_{\mathcal{L}(e)=a} e, \, \phi(s_a^*) = \sum_{\mathcal{L}(e)=a} e^* \text{ for all } a \in \mathcal{A}.$

The property that $(\mathcal{E},\mathcal{L})$ is left-resolving is used to prove that ϕ is well-defined and surjective.

Example - commutative algebras

Proposition

Let \mathcal{B} be a Boolean algebra and let X be its Stone dual. Define $\mathcal{E}^0 = X$, $\mathcal{A} = \mathcal{E}^1 = \emptyset$ and \mathcal{L} the empty function. Then $L_R(\mathcal{E}, \mathcal{L}, \mathcal{B}) \cong L_c(X, R)$.

Proposition

If $L_R(\mathcal{E})$ is commutative, then $L_R(\mathcal{E})$ is a direct sum of copies of R and $R[x, x^{-1}]$.

Example

Let $\overline{\mathbb{N}}$ be the one-point compactification of \mathbb{N} and suppose that R is an integral domain. Then $Lc(\overline{\mathbb{N}},R)$ is a Leavitt labelled path algebra that is not a Leavitt path algebra for any graph. Indeed $Lc(\overline{\mathbb{N}},R)$ cannot contain a copy of $R[x,x^{-1}]$ because it is generated by its idempotents. We also cannot have $Lc(\overline{\mathbb{N}},R)\cong\bigoplus_{i\in I}R$, because $\bigoplus_{i\in I}R\cong Lc(I,R)$, where I has the discrete topology.

Groupoid model

Fix $(\mathcal{E},\mathcal{L},\mathcal{B})$ a labelled space. For each $\alpha\in\mathcal{L}^*$, we have that $\mathcal{B}_{\alpha}=\{\pmb{A}\in\mathcal{B}\mid \pmb{A}\subseteq\pmb{r}(\alpha)\}$ is a Boolean algebra, which is unital whenever $\alpha\neq\omega$. We denote by \pmb{X}_{α} the corresponding Stone dual.

For each $a \in \mathcal{A}$, we define two maps $f_a : X_a \to X_\omega \cup \{\emptyset\}$ and $h_a : X_a \to X_\omega$ by

$$f_a(\mathcal{F}) = \{ A \in \mathcal{B} \mid r(A, a) \in \mathcal{F} \}$$

and

$$h_a(\mathcal{F}) = \{ A \in \mathcal{B} \mid \exists B \in \mathcal{F} \text{ s.t. } B \subseteq A \}$$

where $\mathcal{F} \in X_a$.

Let $E^0 = X_\omega$, $F^0 = X_\omega \cup \{\emptyset\}$ its one-point extension and $E^1 = \bigsqcup_{a \in \mathcal{A}} X_a$ with the disjoint topology. We denote an element of E^1 by $e^a_{\mathcal{F}}$ for $a \in \mathcal{A}$ and $\mathcal{F} \in X_a$. Define maps $s : E^1 \to F^0$ by $s(e^a_{\mathcal{F}}) = f_a(\mathcal{F})$ and $r : E^1 \to E^0$ by $r(e^a_{\mathcal{F}}) = h_a(\mathcal{F})$. Then (E^1, s, r) is a topological correspondence from F^0 to E^0 .

Because $E^0 \subseteq F^0$, we can define the set of finite paths E^* and infinite paths E^∞ in the usual way. Let $E^0_{reg} = \{v \in E^0 \mid \exists V \text{ cpt. ngbh. of } v \text{ s.t. } s^{-1}(V) \text{ is cpt. and } V = s(s^{-1}(V))\}$. The boundary path space is the set $\partial E = \{\mu \in E^* \mid r(\mu) \notin E^0_{reg}\} \cup E^\infty$.

We can then consider the boundary path groupoid

$$\Gamma(E) = \{ (\mu \gamma, |\mu| - |\nu|, \nu \gamma) \in \partial E \times \mathbb{Z} \times \partial E \mid \mu, \nu \in E^*, \gamma \in \partial E \},$$

which is an amenable étale ample Hausdorff groupoid with an appropriate topology.

Theorem

Let $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ be a labelled space. Then $L_R(\mathcal{E}, \mathcal{L}, \mathcal{B}) \cong A_R(\Gamma(\mathcal{E}))$.

Idea of the proof.

For $A \in \mathcal{B}$, we define

$$U_{A} = \{(\mu, 0, \mu) \in \Gamma(E) \mid A \in s(\mu)\},\$$

and for $a \in A$, we define

$$V_a = \{(e_{\mathcal{F}}^a \mu, 1, \mu) \in \Gamma(E)\}.$$

The isomorphism $\phi: L_R(\mathcal{E}, \mathcal{L}, \mathcal{B}) \to A_R(\Gamma(E))$ is given by $\phi(p_A) = 1_{U_A}$, $\phi(s_a) = 1_{V_a}$ and $\phi(s_a^*) = 1_{V_a^{-1}}$.

References

G. Boava, G. G. de Castro, D. Gonçalves, and D. W. van Wyk. Leavitt path algebras of labelled graphs.

Arxiv, arXiv:2106.06036 [math.RA], 2021.

G. G. de Castro and E. J. Kang.

Boundary path groupoids of generalized boolean dynamical systems and their C*-algebras.

Arxiv, arXiv:2106.09366 [math.OA], 2021.

Thank you!