
Part 2: Introduction to Steinberg Algebras

Danie van Wyk

Dartmouth College

Cimpa School - From Dynamics to Algebra and
Representation Theory and Back

8 February 2022



Recap

A groupoid is set G with

I multiplication - only defined for composable pairs: (γ, η) such
that s(γ) = r(η).

I inverses

which satifies axioms similar to those of a group (when it is
meaningful!)

• G is a topological groupoid if it has locally compact topology in
which the multiplication and inverse maps are continuous.



Ample groupoids

Recall

I Open set B ⊂ G is bisection if r |B and s|B are
homeomorphism onto open subsets of G (0).

I G étale if and only if G has a basis of open bisections.

I G is ample if G has a basis of compact open bisections.

For the remainder of today’s talk G denotes a Hausdorff ample
groupoid.



Building blocks of Steinberg Algebras

• Let R be a unital commutative ring R with the discrete topology.

• We say f : G → R is locally constant if for every γ ∈ G there is
an open neigborhood U of γ such that f |U is constant.

• f is locally constant if and only if f : G → R is continuous.
((⇒) holds for any topology on R, and (⇐) is because R has the
discrete topology.)

• Let f : G → R be locally constant and define the support of f as

supp(f ) = {γ ∈ G : f (γ) 6= 0}

Note that supp(f ) is clopen.



Steinberg Algebras over rings

Define

AR(G ) = {f : G → R : f is continuous with compact support}.

We give AR(G ) algebraic structure: define

I addition pointwise, then AR(G ) becomes an R-module

I multiplication by

f ∗ g(γ) =
∑

r(η)=r(γ)

f (η)g(η−1γ)

(called a convolution product)

Then AR(G ) is an R-algebra called the Steinberg algebra
associated with G .



Steinberg Algebras over C
If we take R = C, then we can include an involution: let

AC(G ) = {f : G → R : f has compact support}.

The Steinberg algebra AC(G ) is a *-algebra with

I pointwise addition and scalar multiplication,

I multiplication given by

f ∗ g(γ) =
∑

r(η)=r(γ)

f (η)g(η−1γ),

I involution given by

f (γ)∗ = f (γ−1).

• If R is a unital commutative ring with an involution, then AR(G )
is also a *-algebra.



AR(G ) in terms of characteristic functions

Let Bco(G ) = {U ⊂ G : U is a compact open bisection in G}.

Then Bco(G ) is an inverse-semigroup where

UV = {γη : γ ∈ U, η ∈ V } and U−1 = {γ−1 : γ ∈ U}

The set of idempotents of Bco(G ) is Bco(G (0)).

For any U ∈ Bco we define 1U : G → R by

1U(γ) =

{
1 if γ ∈ U

0 otherwise

Clearly, 1U is locally constant with compact support; thus
1U ∈ AR(G ) for every U ∈ Bco .



Proposition

Let G be an ample groupoid and R a unital commutative ring.
Then

AR(G ) = spanR{1U : U ∈ Bco(G )}.

Properties:
(i) for U,V ∈ Bco(G ), we have 1U ∗ 1V = 1UV ,
(multiplication in AR(G ) corresponds to multiplication in Bco)
To see this, consider

1U ∗ 1V (γ) =
∑

r(η)=r(γ)

1U(η)1V (η−1γ)

=

{
1 if η ∈ U, and η−1γ ∈ V

0 otherwise

Note η ∈ U and η−1γ ∈ V imply γ = ηη−1γ ∈ UV .
On the other hand, if γ ∈ UV , then γ = ηα where η ∈ U and
α ∈ V . Then, η−1γ = α, and s(α) = r(η) = r(γ). That is
1U ∗ 1V (γ) = 1



Proposition

Let G be an ample groupoid and R a unital commutative ring.
Then

AR(G ) = spanR{1U : U ∈ Bco(G )}.

Properties:

(i) for U,V ∈ Bco(G ), we have 1U ∗ 1V = 1UV ,

(multiplication in AR(G ) corresponds to multiplication in Bco)

(ii) if R = C, then 1∗U = 1U−1 ,

(inversions in AR(G ) corresponds to inversion in Bco)



Proposition

Let G be an ample groupoid and R a unital commutative ring.
Then

AR(G ) = spanR{1U : U ∈ Bco(G )}.

Properties:
(iii) For U,V ∈ Bco(G (0)), we have 1U ∗ 1V = 1U1V = 1U∩V
(convolution on the unit space is pointwise multiplication)
To see this, note that U,V ⊂ Bc0(G (0)), then

UV = {uv : u ∈ U, v ∈ V }.

But u and v are units, implying that r(u) = s(u) = r(v) = s(u).
Therefore,

UV = U ∩ V .

Then
1U ∗ 1V = 1UV = 1U∩V = 1U1V .



Proposition

Let G be an ample groupoid and R a unital commutative ring.
Then

AR(G ) = spanR{1U : U ∈ Bco(G )}.

Properties:

(iv) AR(G ) is unital if and only if G (0) is compact, with 1G (0) being
the unit.

(v) AR(G (0)) ⊂ AR(G )



Examples
Matrix groupoid: Let N ∈ N and
RN = {1, 2, . . . ,N} × {1, 2, . . . ,N} the matrix groupoid (with
discrete topology). Then

AC(RN) = spanC{1(i ,j) : 1 ≤ i , j ≤ N}.

If 1(i ,i), 1(k,l) ∈ AC(RN), then

1(i ,j) ∗ 1(k,l) = 1(i ,j)(k,l) = δj ,k1(i ,l).

Therefore, every 1(i ,j) is a matrix unit, e.g

1(2,3) =


0 0 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0


Hence AC(RN) ∼= MN(C).



Examples

Transformation groupoid: Soppose H discrete group (e.g Z) that
acts on a locally compact Hausdorff space X by homeomorphisms
and that X has basis of compact open sets B.

Step 1: An induced action on and algebra:

Suppse the action is given by φ : H → Homeo(X ), h 7→ φh.

The skew group ring associted with (H,X ) is a non-commutative
ring that captures the dynamics. It is constructed as follows:

Let Lc(X ) = {f : X → R : f is locally constant}. Then Lc(X ) is
an R-algebra with pointwise operations.

Define φ̂ : H → Aut(Lc(X )) by

φ̂h(f )(x) = f ◦ φh(x).

Then φ̂ is an action of H on Lc(X ).



Examples
Transformation groupoid:

Step 2: The skew group ring: let

Lc(X )oφ̂H =

{∑
h∈H

ahδh : ah ∈ Lc(X ) and at most fintely many ah 6= 0

}

and define

I addition is defined pointwise

I mulitplication is defined by

(agδg )(ahδh) = ag φ̂h(ah)δgh

I (ahδh)∗ = a∗hδh−1 (if R has an involution)



Examples

3. Transformation groupoid:
Step 3: The Steinberg algebra of

G = {(x , h, y) ∈ X × H × X : x = φh(y)}

is given by

AR(G ) = spanR{1U×{h}×φh(U) : U ∈ B}

Theorem
Lc(X ) oφ̂ H

∼= AR(G )



Examples
Graph groupoids

Let E = (E 1,E 0, r , s) be a directed graph with associated graph
groupoid

GE = {(αx , |α| − |β|, βx) ∈ ∂E × Z× ∂E : x ∈ ∂E , α, β ∈ E ∗}.

Recall that GE is ample and all

Z (µ, ν) = {(µx , |µ| − |ν|, νx) ∈ GE : µx ∈ Z (µ), νx ∈ Z (ν)}

and

Z (µ,F , ν) = {(µx , |µ|−|ν|, νx) ∈ GE : µx ∈ Z (µ\F ), νx ∈ Z (ν\F )},

is a basis of compact open bisections for a locally compact
Hausdorff topology on GE .
Therefore,

AR(GE ) = {1Z(µ,F ,ν) : µ, ν ∈ E ∗, r(µ) = r(ν) and F ⊆ r(µ)E 1 is finite}



Leavitt path algebras as Steinberg algebras

Theorem
LR(E ) ∼= AR(GE )

The isomorphism above is explicit, and is defined on generators as
follows

v ∈ E 0 : pv 7→ 1Z(v ,v)

e ∈ E 1 : se 7→ 1Z(e,r(e))

e ∈ E 1 : se∗ 7→ 1Z(r(e),e)

Surjectivity follows from the observation

1Z(µ,F ,ν) = 1Z(µ,r(µ))1Z(r(ν),ν) −
∑
e∈F

1Z(µe,r(µe))1Z(r(νe),νe).


