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What is a Groupoid?

A groupoid consists of a

I set G

I set G (2) ⊂ G × G , called composable pairs

I map G (2) → G , (γ, η) 7→ γη, called multiplication

I map G → G , γ 7→ γ−1, called an inverse

satisfying the conditions

I involution: (γ−1)−1 = γ for all γ ∈ G .

I associativity: if (γ, η), (η, δ) ∈ G (2) then
(γη, δ), (γ, ηδ) ∈ G (2) and (γη)δ = γ(ηδ),

I identities: (γ, γ−1) ∈ G (2) for every γ ∈ G , and

(γ, η) ∈ G (2) ⇒ (γη)η−1 = γ and γ−1(γη) = η.



Groupoids

Every groupoid has

I a range map r(γ) := γγ−1.

I a source map s(γ) := γ−1γ.

I a unit space G (0) := r(G ) = s(G ).

Lemma
Let G be a groupoid.We have

I γ ∈ G ⇒ (r(γ), γ), (γ, s(γ)) ∈ G (2) and r(γ)γ = γ = γs(γ)

I (γ, η) ∈ G (2) if and only if s(γ) = r(η); thus

G (2) = {(γ, η) ∈ G × G : s(γ) = r(η)}

I r(u) = u = s(u) for all u ∈ G (0)



Groupoids

Every groupoid has

I a range map r(γ) := γγ−1.

I a source map s(γ) := γ−1γ.

I a unit space G (0) := r(G ) = s(G ).

Visualizing groupoid elements



Groupoids

Every groupoid has

I a range map r(γ) := γγ−1.

I a source map s(γ) := γ−1γ.

I a unit space G (0) := r(G ) = s(G ).

Visualizing multiplication



Structural notions

If u ∈ G (0), then

I the isotropy group at u is

G (u) := {γ ∈ G : r(γ) = s(γ) = u}

(G (u) is a bona fide group)

I the orbit of u is

[u] = {v ∈ G (0) : ∃γ ∈ G s.t. r(γ) = v , s(γ) = u}



Examples of groupoids

1. Groups: Every group G is a groupoid with the group operation
and group inverses. In this case G(0) = {e}. A groupoid is a group
if and only if its unit space is a singleton.

2. Matrix groupoids: Fix N ∈ N. Let

RN = {1, 2, . . . ,N} × {1, 2, . . . ,N}.

Define

I ((i , j), (k , l)) ∈ R(2) if j = k and then (i , j)(j , l) = (i , l), and

I (i , j)−1 = (j , i).

Then RN is a groupoid; it is a special cases of the following.



Examples of groupoids

3. Equivalence relations: Let X be a set, and R ⊂ X × X an
equivalence relation.

Define

I ((x , y), (w , z)) ∈ R(2) if w = y and then (x , y)(y , z) = (x , z),

and

I (x , y)−1 = (y , x).

Then R is a groupoid and

I r(x , y) = (x , y)(x , y)−1 = (x , x) and
s(x , y) = (x , y)−1(x , y) = (y , y),

and therefore

I R(0) = {(x , x) : x ∈ X} (so we ‘identify’ R(0) with X ).

Extreme cases:

I R = X × X

I R = {(x , x) : x ∈ X}



Groupoids that are equivalence relations

• If G and H are groupoids, then φ : G → H is a groupoid
homomorphism if

(γ, η) ∈ G (2) ⇒ (φ(γ), φ(η)) ∈ H(2) and φ(γη) = φ(γ)φ(η).

• If φ is bijective and φ−1 is also a groupoid homomorphism, the φ
is a groupoid isomorphism.

• R(G ) = {(r(γ), s(γ)) ∈ G (0) × G (0) : γ ∈ G} defines an
equivalence relation on G (0), and γ 7→ (r(γ), s(γ)) is a surjective
groupoid homomorphism from G to R.

• We say G is principle if γ 7→ (r(γ), s(γ)) is injective.

Lemma
G is algebraically isomorphic to an equivalence relation if and only
if G is principle.



(More) Examples of groupoids

4. Group actions: Let a group H act on a set X by bijections.

Let
G = {(x , g , y) ∈ X × H × X : x = g · y}.

Define

I (x , g , y)(y , h, z) = (x , gh, z) (undefined otherwise)

I (x , g , y)−1 = (y , g−1, x)

Then G is a groupoid and

I r(x , g , y) = (x , e, x) (e is the identity of H)

I s(x , g , y) = (y , e, y), and

I G (0) = {(x , e, x) : x ∈ X} (we identify G (0) with X ).

I G is sometimes called a transformation groupoid.

I G encodes the structural properties of (H,X ), e.g. orbits and
isotropy groups.



(More) Examples of groupoids

5. Directed graphs: Let E = (E 1,E 0, r , s) be a directed graph;
that is

I E 0 is a set vertices

I E 1 is a set of edges

I r , s : E 1 → E 0 are the range and source maps

For example

Here E 1 = {e, f },E 0 = {u, v}, s(e) = u and
r(e) = v = r(f ) = s(f ).



(More) Examples of groupoids

5. Directed graphs: Let (E 1,E 0, r , s) be a directed graph. Then

I a path of length n is a finite sequence of edges e1e2 · · · en
such that r(ei ) = s(ei+1) for every 1 ≤ i ≤ n − 1. Let E ∗

denote all finite paths in E .

I v ∈ E 0 is considered as path of length 0.

I an infinite path is an infinite sequence e1e2 · · · such that
r(ei ) = s(ei+1) for all i ∈ N. Let E∞ denote all infinite paths
in E .

I for x ∈ E ∗, we let xE 1 = {e ∈ E 1 : s(e) = r(x)}.

I the boundary path space is
∂E = E∞ ∪ {x ∈ E ∗ : xE 1 = ∅} ∪ {x ∈ E ∗ : |xE 1| =∞}.



(More) Examples of groupoids

5. Directed graphs: Let (E 1,E 0, r , s) be a directed graph
Define

GE = {(αx , |α| − |β|, βx) ∈ ∂E × Z× ∂E : x ∈ ∂E , α, β ∈ E ∗}

and

I multiplication by (x , k , y)(y , l , z) = (x , k + l , z)

I inversion by (x , k , y)−1 = (y ,−k , x).

Then

I GE is a groupoid,

I r(x , k , y) = (x , 0, x) and s(x , k , y) = (y , 0, y),

and

I G
(0)
E = {(x , 0, x) : x ∈ ∂E} is identified with ∂E .



Topological groupoids

G is a topological groupoid if G is a groupoid with a locally
compact topology such that

I G (0) is Hausdorff in the relative topology,

I (γ, η) 7→ γη is continuous
(w.r.t. relative product topology on G (2)),and

I γ 7→ γ−1 is continuous.

Consequently, r , s : G → G (0) are continuous.

• Many groupoids of interest are Hausdorff. However, there are
many important examples of non-Hausdorff groupoids, making
those attractive to study (c.f. REF).

• In this talk I will only consider Hausdorff groupoids.

Lemma
G is Hausdorff if and only if G (0) is closed in G .



Étale

I A function f : X → Y is a local homeomorphism if f is
continuous and for every x ∈ X , there is an open
neighborhood U of x such that f (U) ⊆ Y is open and
f : U → f (U) is a homeomorphism.

I A topological groupoid G is an étale groupoid if r : G → G (0)

is a local homeomorphism.

I G étale, then B ⊂ G is a bisection if there is open U ⊇ B
such that r : U → r(U) and s : U → s(U) are
homeomorphims onto open sets of G (0).

I G is an ample groupoid if it has a basis of compact open
bisections.



Étale

Proposition

Let G be a Hausdorff groupoid. The following are equivalent.

I G is an étale groupoid

I G (0) is open in G

I r and s are local homeomorphism

I G has a basis of open bisections for its topology.



Examples of Topological groupoids

1. Groups

I Every locally compact group G is a topological groupoid.

I G is étale if and only if G is discrete (i.e. étale groupoids
generalize discrete groups)

2.Equivalence relations:

I If X is a locally compact space and R ⊂ X × X an
equivalence relation. Then R is a topological groupoid with
the relative product topology from X × X .



Examples of Topological groupoids

3. Group actions:

I If H is locally compact Hausdorff group acting on locally
compact Hausdorff space X by homeomorphisms, then

G = {(x , g , y) ∈ X × H × X : x = g · y}.

is a topological groupoid w.r.t. the relative product topology.

I G is étale if and only if H is a discrete group. (so actually
étale groupoids generalize discrete groups actions)

I If X has a basis of compact open sets, then G is ample.



Examples of Topological groupoids
3. Directed graphs: Let E = (E 1,E 0, r , s) be a directed graph.
For µ ∈ E ∗ and F ⊆ r(µ)E 1 finite, define the cylinder set

Z (µ) = {µx ∈ ∂E : x ∈ r(µ)∂E}

and the punctured cylinder set

Z (µ\F ) = Z (µ)\ ∪e∈F Z (µe).

For example

Here Z (µ) = {µx , µy} and Z (µ\{y}) = {µx}.
The cylinder and punctured cylinder sets form a basis of compact
open sets for a locally compact Hausdorff topology on ∂E .



Examples of Topological groupoids

3. Directed graphs: Let E = (E 1,E 0, r , s) be a directed graph.

Using the cylinder sets we can define a topology on GE : for
µ, ν ∈ E ∗ with r(µ) = r(ν) and F ⊆ r(µ)E 1 finite we define

Z (µ, ν) = {(µx , |µ| − |ν|, νx) ∈ GE : µx ∈ Z (µ), νx ∈ Z (ν)}

and

Z (µ,F , ν) = {(µx , |µ|−|ν|, νx) ∈ GE : µx ∈ Z (µ\F ), νx ∈ Z (ν\F )}.

These sets for a basis of compact open bisections for a locally
compact Hausdorff topology on GE , making GE an ample groupoid.


