Part 1: Introduction to groupoids

Danie van Wyk

Dartmouth College

Cimpa School - From Dynamics to Algebra and Representation Theory and Back

7 February 2022

What is a Groupoid?

A groupoid consists of a

▶ set G

▶ set $G^{(2)} \subset G \times G$, called composable pairs

▶ map $G^{(2)} \rightarrow G, (\gamma, \eta) \mapsto \gamma \eta$, called multiplication

▶ map
$$G \to G, \gamma \mapsto \gamma^{-1}$$
, called an inverse

satisfying the conditions

• involution:
$$(\gamma^{-1})^{-1} = \gamma$$
 for all $\gamma \in G$.

► associativity: if
$$(\gamma, \eta), (\eta, \delta) \in G^{(2)}$$
 then $(\gamma\eta, \delta), (\gamma, \eta\delta) \in G^{(2)}$ and $(\gamma\eta)\delta = \gamma(\eta\delta),$

• identities:
$$(\gamma, \gamma^{-1}) \in G^{(2)}$$
 for every $\gamma \in G$, and
 $(\gamma, \eta) \in G^{(2)} \Rightarrow (\gamma \eta) \eta^{-1} = \gamma$ and $\gamma^{-1}(\gamma \eta) = \eta$.

Groupoids

Every groupoid has

• a range map $r(\gamma) := \gamma \gamma^{-1}$.

• a source map
$$s(\gamma) := \gamma^{-1} \gamma$$
.

• a unit space
$$G^{(0)} := r(G) = s(G)$$
.

Lemma

Let G be a groupoid.We have

•
$$r(u) = u = s(u)$$
 for all $u \in G^{(0)}$

Groupoids

Every groupoid has

- a range map $r(\gamma) := \gamma \gamma^{-1}$.
- a source map $s(\gamma) := \gamma^{-1} \gamma$.
- a unit space $G^{(0)} := r(G) = s(G)$.

Visualizing groupoid elements

Groupoids

Every groupoid has

- a range map $r(\gamma) := \gamma \gamma^{-1}$.
- a source map $s(\gamma) := \gamma^{-1} \gamma$.
- a unit space $G^{(0)} := r(G) = s(G)$.

Visualizing multiplication

Structural notions

If $u \in G^{(0)}$, then

the isotropy group at u is

$$G(u) := \{ \gamma \in G : r(\gamma) = s(\gamma) = u \}$$

(G(u) is a bona fide group)

▶ the *orbit* of u is

$$[u] = \{ v \in G^{(0)} : \exists \gamma \in G \text{ s.t. } r(\gamma) = v, s(\gamma) = u \}$$

Examples of groupoids

1. Groups: Every group \mathcal{G} is a groupoid with the group operation and group inverses. In this case $\mathcal{G}^{(0)} = \{e\}$. A groupoid is a group if and only if its unit space is a singleton.

2. Matrix groupoids: Fix $N \in \mathbb{N}$. Let

$$R_N = \{1, 2, \dots, N\} \times \{1, 2, \dots, N\}.$$

Define

•
$$((i,j),(k,l)) \in R^{(2)}$$
 if $j = k$ and then $(i,j)(j,l) = (i,l)$, and

►
$$(i,j)^{-1} = (j,i).$$

Then R_N is a groupoid; it is a special cases of the following.

Examples of groupoids

3. Equivalence relations: Let X be a set, and $R \subset X \times X$ an equivalence relation.

Define

• $((x, y), (w, z)) \in R^{(2)}$ if w = y and then (x, y)(y, z) = (x, z), and

►
$$(x, y)^{-1} = (y, x).$$

Then R is a groupoid and

►
$$r(x, y) = (x, y)(x, y)^{-1} = (x, x)$$
 and
 $s(x, y) = (x, y)^{-1}(x, y) = (y, y)$,

and therefore

•
$$R^{(0)} = \{(x, x) : x \in X\}$$
 (so we 'identify' $R^{(0)}$ with X).

Extreme cases:

•
$$R = X \times X$$

• $R = \{(x, x) : x \in X\}$

Groupoids that are equivalence relations

• If G and H are groupoids, then $\phi : G \to H$ is a groupoid homomorphism if

$$(\gamma,\eta)\in \mathcal{G}^{(2)}\Rightarrow (\phi(\gamma),\phi(\eta))\in \mathcal{H}^{(2)} ext{ and } \phi(\gamma\eta)=\phi(\gamma)\phi(\eta).$$

• If ϕ is bijective and ϕ^{-1} is also a groupoid homomorphism, the ϕ is a groupoid isomorphism.

• $R(G) = \{(r(\gamma), s(\gamma)) \in G^{(0)} \times G^{(0)} : \gamma \in G\}$ defines an equivalence relation on $G^{(0)}$, and $\gamma \mapsto (r(\gamma), s(\gamma))$ is a surjective groupoid homomorphism from G to R.

• We say G is principle if $\gamma \mapsto (r(\gamma), s(\gamma))$ is injective.

Lemma

G is algebraically isomorphic to an equivalence relation if and only if G is principle.

4. Group actions: Let a group H act on a set X by bijections. Let

$$G = \{(x, g, y) \in X \times H \times X : x = g \cdot y\}.$$

Define

Then G is a groupoid and

•
$$r(x,g,y) = (x,e,x)$$
 (e is the identity of H)

•
$$s(x, g, y) = (y, e, y)$$
, and

- $G^{(0)} = \{(x, e, x) : x \in X\}$ (we identify $G^{(0)}$ with X).
- *G* is sometimes called a transformation groupoid.
- G encodes the structural properties of (H, X), e.g. orbits and isotropy groups.

5. Directed graphs: Let $E = (E^1, E^0, r, s)$ be a directed graph; that is

- ► E⁰ is a set vertices
- \blacktriangleright E^1 is a set of edges
- ▶ $r, s: E^1 \rightarrow E^0$ are the range and source maps

For example

Here
$$E^1 = \{e, f\}, E^0 = \{u, v\}, s(e) = u$$
 and $r(e) = v = r(f) = s(f)$.

- 5. Directed graphs: Let (E^1, E^0, r, s) be a directed graph. Then
 - ▶ a path of length n is a finite sequence of edges e₁e₂ ··· e_n such that r(e_i) = s(e_{i+1}) for every 1 ≤ i ≤ n − 1. Let E^{*} denote all finite paths in E.
 - $v \in E^0$ is considered as path of length 0.
 - an infinite path is an infinite sequence e₁e₂ ··· such that r(e_i) = s(e_{i+1}) for all i ∈ N. Let E[∞] denote all infinite paths in E.

• for
$$x \in E^*$$
, we let $xE^1 = \{e \in E^1 : s(e) = r(x)\}$.

▶ the boundary path space is $\partial E = E^{\infty} \cup \{x \in E^* : xE^1 = \emptyset\} \cup \{x \in E^* : |xE^1| = \infty\}.$

5. Directed graphs: Let (E^1, E^0, r, s) be a directed graph Define

 $G_{E} = \{ (\alpha x, |\alpha| - |\beta|, \beta x) \in \partial E \times \mathbb{Z} \times \partial E : x \in \partial E, \alpha, \beta \in E^* \}$

and

• multiplication by (x, k, y)(y, l, z) = (x, k + l, z)

• inversion by
$$(x, k, y)^{-1} = (y, -k, x)$$
.

Then

▶
$$r(x, k, y) = (x, 0, x)$$
 and $s(x, k, y) = (y, 0, y)$,

and

•
$$G_E^{(0)} = \{(x,0,x) : x \in \partial E\}$$
 is identified with ∂E .

Topological groupoids

G is a topological groupoid if G is a groupoid with a locally compact topology such that

- $G^{(0)}$ is Hausdorff in the relative topology,
- $(\gamma, \eta) \mapsto \gamma \eta$ is continuous (w.r.t. relative product topology on $G^{(2)}$),and

 $\blacktriangleright \ \gamma \mapsto \gamma^{-1} \text{ is continuous.}$

Consequently, $r,s: G \to G^{(0)}$ are continuous.

• Many groupoids of interest are Hausdorff. However, there are many important examples of non-Hausdorff groupoids, making those attractive to study (c.f. REF).

• In this talk I will only consider Hausdorff groupoids.

Lemma

G is Hausdorff if and only if $G^{(0)}$ is closed in G.

Étale

- A function f : X → Y is a local homeomorphism if f is continuous and for every x ∈ X, there is an open neighborhood U of x such that f(U) ⊆ Y is open and f : U → f(U) is a homeomorphism.
- A topological groupoid G is an étale groupoid if r : G → G⁽⁰⁾ is a local homeomorphism.
- G étale, then B ⊂ G is a bisection if there is open U ⊇ B such that r : U → r(U) and s : U → s(U) are homeomorphims onto open sets of G⁽⁰⁾.
- ► *G* is an **ample groupoid** if it has a basis of **compact open** bisections.

Proposition

Let G be a Hausdorff groupoid. The following are equivalent.

- G is an étale groupoid
- $G^{(0)}$ is open in G
- r and s are local homeomorphism
- G has a basis of open bisections for its topology.

1. Groups

- ▶ Every locally compact group G is a topological groupoid.
- G is étale if and only if G is discrete (i.e. étale groupoids generalize discrete groups)

2.Equivalence relations:

If X is a locally compact space and R ⊂ X × X an equivalence relation. Then R is a topological groupoid with the relative product topology from X × X.

3. Group actions:

If H is locally compact Hausdorff group acting on locally compact Hausdorff space X by homeomorphisms, then

$$G = \{(x, g, y) \in X \times H \times X : x = g \cdot y\}.$$

is a topological groupoid w.r.t. the relative product topology.

- G is étale if and only if H is a discrete group. (so actually étale groupoids generalize discrete groups actions)
- ▶ If X has a basis of compact open sets, then G is ample.

3. Directed graphs: Let $E = (E^1, E^0, r, s)$ be a directed graph. For $\mu \in E^*$ and $F \subseteq r(\mu)E^1$ finite, define the cylinder set

$$Z(\mu) = \{\mu x \in \partial E : x \in r(\mu)\partial E\}$$

and the punctured cylinder set

$$Z(\mu \backslash F) = Z(\mu) \backslash \cup_{e \in F} Z(\mu e).$$

For example

Here $Z(\mu) = \{\mu x, \mu y\}$ and $Z(\mu \setminus \{y\}) = \{\mu x\}$. The cylinder and punctured cylinder sets form a basis of compact open sets for a locally compact Hausdorff topology on ∂E .

3. Directed graphs: Let $E = (E^1, E^0, r, s)$ be a directed graph.

Using the cylinder sets we can define a topology on G_E : for $\mu, \nu \in E^*$ with $r(\mu) = r(\nu)$ and $F \subseteq r(\mu)E^1$ finite we define

$$Z(\mu, \nu) = \{(\mu x, |\mu| - |\nu|, \nu x) \in G_E : \mu x \in Z(\mu), \nu x \in Z(\nu)\}$$

and

$$Z(\mu, F, \nu) = \{(\mu x, |\mu| - |\nu|, \nu x) \in G_E : \mu x \in Z(\mu \setminus F), \nu x \in Z(\nu \setminus F)\}.$$

These sets for a basis of compact open bisections for a locally compact Hausdorff topology on G_E , making G_E an ample groupoid.