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1. Leavitt path algebras as Steinberg algebras

We briefly recall some definitions seen during the first two talks. The exercise will be given
at the end of the section. Let E = (E1, E0, r, s) be a directed graph.

• For x ∈ E∗, we let xE1 = {e ∈ E1 : s(e) = r(x)}.
• The boundary path space is

∂E = E∞ ∪ {x ∈ E∗ : xE1 = ∅} ∪ {x ∈ E∗ : |xE1| = ∞}.
• xE1 = ∅ means that r(x) is a sink, |xE1| = ∞ means that r(x) is an infinite emitter.

For µ ∈ E∗ and F ⊆ r(µ)E1 finite, define the cylinder set

Z(µ) = {µx ∈ ∂E : x ∈ r(µ)∂E}
and the punctured cylinder set

Z(µ\F ) = Z(µ)\ ∪e∈F Z(µe).

Define

GE = {(αx, |α| − |β|, βx) ∈ ∂E × Z× ∂E : x ∈ ∂E, α, β ∈ E∗}
and

• multiplication by (x, k, y)(y, l, z) = (x, k + l, z)
• inversion by (x, k, y)−1 = (y,−k, x).

Then

• GE is a groupoid,
• r(x, k, y) = (x, 0, x) and s(x, k, y) = (y, 0, y), and

• G
(0)
E = {(x, 0, x) : x ∈ ∂E} is identified with ∂E.

Using the cylinder sets we can define a topology on GE : for µ, ν ∈ E∗ with r(µ) = r(ν) and
F ⊆ r(µ)E1 finite we define

Z(µ, ν) = {(µx, |µ| − |ν|, νx) ∈ GE : µx ∈ Z(µ), νx ∈ Z(ν)}
and

Z(µ, F, ν) = {(µx, |µ| − |ν|, νx) ∈ GE : µx ∈ Z(µ\F ), νx ∈ Z(ν\F )}.
These sets form a basis of compact open bisections for a locally compact Hausdorff topology

on GE , making GE an ample groupoid.
Define

AR(G) = {f : G → R : f is continuous with compact support}.
We give AR(G) algebraic structure: define

• addition pointwise, then AR(G) becomes an R-module
• multiplication by

f ∗ g(γ) =
∑

r(η)=r(γ)

f(η)g(η−1γ)

(called a convolution product)
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Then AR(G) is an R-algebra called the Steinberg algebra associated with G.
Since a Steinberg algebra is spanned by characteristic functions on compact open bisections,

we have that

AR(GE) = spanR{1Z(µ,F,ν) : µ, ν ∈ E∗, r(µ) = r(ν) and F ⊆ r(µ)E1 is finite}.

Exercise 1. In AR(GE), consider the functions as follows:

for v ∈ E0 : pv = 1Z(v,v)

for e ∈ E1 : se = 1Z(e,s(e))

for e ∈ E1 : se∗ = 1Z(s(e),e)

Prove that the following hold in AR(GE)

• (V) for v, w ∈ E0, pv ∗ pv = pv and pv ∗ pw = 0 if v ̸= w,
• (E1) for e ∈ E1, ps(e) ∗ se = se and se ∗ pr(e) = se,

• (E2) for e ∈ E1, pr(e) ∗ s∗e = s∗e and s∗e ∗ pr(e) = s∗e (it is analogous to (E1)),

• (CK1) for e, f ∈ E1, s∗e ∗ se = pr(e) and s∗esf = 0 if e ̸= f ,

• (CK2) for v ∈ E0 such that 0 < |vE1| < ∞ (that is, v is not a sink nor an infinite
emitter),

pv =
∑

e∈s−1(v)

se ∗ s∗e.

2. A dynamical point of view for the LPA relations

Exercise 2. For a given set X, let I(X) = {f : A → B | A,B ⊆ X and f is a bijection} (the
empty function is a bijection!).

(a) For f : A → B, g : C → D ∈ I(X), let g ◦ f : f−1(B ∩ C) → g(B ∩ C) be given by
(g ◦ f)(x) = g(f(x)), where x ∈ X. Prove that g ◦ f ∈ I(X).

(b) For f : A → B, g : C → D ∈ I(X) such that A∩C = ∅ = B ∩D, show that there is natural
way to define f ∪ g ∈ I(X) (one can actually define f ∪ g whenever f ◦ g−1 and f−1 ◦ g are
identity maps or the empty function).

Back to graphs, let ∂E≥1 = {µ ∈ ∂E : |µ| ≥ 1}. We define a map σ : ∂E≥1 = ∂E as follows{
σ(e) = r(e), if e ∈ E1 ∩ ∂E

σ(eµ) = µ, if e ∈ E1 and µ ∈ ∂E≥1.

The map σ is called the shift map. This gives a partially defined dynamics on ∂E.

Exercise 3. Consider the following functions:

• Pv = IdZ(v) : Z(v) → Z(v) for v ∈ E0,

• Se : Z(e) → Z(r(e)) given by Se(ν) = σ(ν) if ν ∈ Z(e), where e ∈ E1.

(a) Prove that Pv ∈ I(∂E) and Se ∈ I(∂E) for every v ∈ E0 and e ∈ E1. Describe S−1
e

(b) Prove that the following holds in I(∂E)
• (V) for v, w ∈ E0, Pv ◦ Pv = Pv and Pv ◦ Pw = ∅ if v ̸= w,
• (E1) for e ∈ E1, Ps(e) ◦ Se = Se and Se ◦ Pr(e) = Se,

• (E2) for e ∈ E1, Pr(e) ◦ S−1
e = S−1

e and S−1
e ◦ Pr(e) = S−1

e ,

• (CK1) for e, f ∈ E1, S−1
e ◦ Se = Pr(e) and S−1

e ◦ Sf = ∅ if e ̸= f ,

• (CK2) for v ∈ E0 such that 0 < |vE1| < ∞ (that is, v is not a sink nor an infinite
emitter),

Pv =
⋃

e∈s−1(v)

Se ◦ S−1
e .

(c) Prove that each Se is a homeomorphism, so that σ is a local homeomorphism.


