Chaos on ultragraph shift spaces

Daniel Gonçalves - UFSC

Feb 2022

Coding dynamical systems

Edge shift space

Definition 1.

Given a graph (E^0, E^1, r, s) the associated edge shift space is defined as

$$X = \{(e_n) : r(e_n) = s(e_{n+1}) \forall n = 1, 2, \ldots\},\$$

with the prodiscrete topology.

Edge shift space

Definition 1.

Given a graph (E^0, E^1, r, s) the associated edge shift space is defined as

$$X = \{(e_n) : r(e_n) = s(e_{n+1}) \forall n = 1, 2, \ldots\},\$$

with the prodiscrete topology.

Definition 2.

Metric on X:

$$d\left((e_n),(f_n)
ight)=rac{1}{2^j},\,\, ext{where}\,\,e_1\ldots e_{j-1}=f_1\ldots f_{j-1}\,\, ext{and}\,\,e_j
eq f_j.$$

Let (X, f) be a dynamical system.

Definition 3.

A pair $(x, y) \in X \times X$ is called *scrambled* if

If $d(f^n(x), f^n(y)) > 0$ and

Let (X, f) be a dynamical system.

Definition 3.

A pair $(x, y) \in X \times X$ is called *scrambled* if

•
$$\lim \sup d(f^n(x), f^n(y)) > 0$$
 and

■
$$\liminf d(f^n(x), f^n(y)) = 0.$$

Let (X, f) be a dynamical system.

Definition 3.

A pair $(x, y) \in X \times X$ is called *scrambled* if

If $m \sup d(f^n(x), f^n(y)) > 0$ and

•
$$\liminf d(f^n(x), f^n(y)) = 0.$$

(X, f) is *Li-Yorke chaotic* if there exists a uncountable subset of X such that every pair (x, y) is scrambled.

Let (X, f) be a dynamical system.

Definition 3.

A pair $(x, y) \in X \times X$ is called *scrambled* if

If $m \sup d(f^n(x), f^n(y)) > 0$ and

•
$$\liminf d(f^n(x), f^n(y)) = 0.$$

(X, f) is *Li-Yorke chaotic* if there exists a uncountable subset of X such that every pair (x, y) is scrambled.

Example 4.

Full shift on two generators.

How to define an analogue for infinite alphabets?

How to define an analogue for infinite alphabets? Appeared most commonly in the context of countable-state Markov chains (or equivalently, shifts coming from countable directed graphs or matrices). Examples of such approach can be found in [8, 10, 18], [1, 2], etc.. Many approachs to shift spaces over infinite alphabets.

- Many approachs to shift spaces over infinite alphabets.
- **Difficulty:** Usually shift spaces are not compact.

Infinite alphabet shift spaces

- Many approachs to shift spaces over infinite alphabets.
- **Difficulty:** Usually shift spaces are not compact.
- Recently Ott, Tomforde and Willis proposed a new approach to infinite shift spaces, connected to graph C*-algebras, see [22]:

Infinite alphabet shift spaces

- Many approachs to shift spaces over infinite alphabets.
- **Difficulty:** Usually shift spaces are not compact.
- Recently Ott, Tomforde and Willis proposed a new approach to infinite shift spaces, connected to graph C*-algebras, see [22]:
- Exel and Laca propose a shift space associated to an infinite matrix as the spectrum of a certain commutative algebra, see
 [5]

Infinite alphabet shift spaces

- Many approachs to shift spaces over infinite alphabets.
- **Difficulty:** Usually shift spaces are not compact.
- Recently Ott, Tomforde and Willis proposed a new approach to infinite shift spaces, connected to graph C*-algebras, see [22]:
- Exel and Laca propose a shift space associated to an infinite matrix as the spectrum of a certain commutative algebra, see
 [5]
- We want a definition that puts the approaches connected to graph C*-algebras and topological Markov chains with infinitely many states under one umbrella.

Infinite graphs

Ultragraphs

Ultragraphs

Definition 2.1.

An ultragraph is a quadruple $\mathcal{G} = (G^0, \mathcal{G}^1, r, s)$ consisting of two countable sets G^0, \mathcal{G}^1 , a map $s : \mathcal{G}^1 \to G^0$, and a map $r : \mathcal{G}^1 \to P(G^0) \setminus \{\emptyset\}$, where $P(G^0)$ stands for the power set of G^0 .

Definition 2.2.

Let \mathcal{G} be an ultragraph. Define \mathcal{G}^0 to be the smallest subset of $P(G^0)$ that contains $\{v\}$ for all $v \in G^0$, contains r(e) for all $e \in \mathcal{G}^1$, and is closed under finite unions and non-empty finite intersections.

Definition 2.2.

Let \mathcal{G} be an ultragraph. Define \mathcal{G}^0 to be the smallest subset of $P(G^0)$ that contains $\{v\}$ for all $v \in G^0$, contains r(e) for all $e \in \mathcal{G}^1$, and is closed under finite unions and non-empty finite intersections.

Definition 2.3.

The ultragraph algebra $C^*(\mathcal{G})$ is the universal C^* -algebra generated by a family of partial isometries with orthogonal ranges $\{s_e : e \in \mathcal{G}^1\}$ and a family of projections $\{p_A : A \in \mathcal{G}^0\}$ satisfying

$$p_{\emptyset} = 0, p_A p_B = p_{A \cap B}, p_{A \cup B} = p_A + p_B - p_{A \cap B}, \text{ for all } A, B \in \mathcal{G}^0;$$

2
$$s_e^* s_e = p_{r(e)}$$
, for all $e \in \mathcal{G}^1$;
3 $s_e s_e^* \le p_{s(e)}$ for all $e \in \mathcal{G}^1$; and
4 $p_v = \sum_{s(e)=v} s_e s_e^*$ whenever $0 < |s^{-1}(v)| < \infty$.

Example: Renewal shift

$$A = \begin{pmatrix} 1 & 1 & 1 & \dots \\ 1 & 0 & 0 & \dots \\ 0 & 1 & 0 & \dots \\ \vdots & \ddots & \end{pmatrix}$$

Example: Renewal shift

Definition 3.1.

For each subset A of G^0 , let $\varepsilon(A)$ be the set $\{e \in \mathcal{G}^1 : s(e) \in A\}$. We shall say that a set A in \mathcal{G}^0 is an infinite emitter whenever $\varepsilon(A)$ is infinite.

Definition 3.1.

For each subset A of G^0 , let $\varepsilon(A)$ be the set $\{e \in \mathcal{G}^1 : s(e) \in A\}$. We shall say that a set A in \mathcal{G}^0 is an infinite emitter whenever $\varepsilon(A)$ is infinite.

Definition 3.2.

Let $A \in \mathcal{G}^0$. We say that A is a minimal infinite emitter if it is an infinite emitter that contains no proper subsets (in \mathcal{G}^0) that are infinite emitters.

Definition 3.1.

For each subset A of G^0 , let $\varepsilon(A)$ be the set $\{e \in \mathcal{G}^1 : s(e) \in A\}$. We shall say that a set A in \mathcal{G}^0 is an infinite emitter whenever $\varepsilon(A)$ is infinite.

Definition 3.2.

Let $A \in \mathcal{G}^0$. We say that A is a minimal infinite emitter if it is an infinite emitter that contains no proper subsets (in \mathcal{G}^0) that are infinite emitters.

We denote the set of all minimal infinite emitters in $r(\alpha)$ by M_{α} .

Let

$$X_{fin} = \{(\alpha, A) \in \mathfrak{p} : |\alpha| \ge 1 \text{ and } A \in M_{\alpha}\} \cup \{(A, A) \in \mathcal{G}^0 : A \text{ is a minimal infinite emitter}\}.$$

Let

$$X_{fin} = \{(\alpha, A) \in \mathfrak{p} : |\alpha| \ge 1 \text{ and } A \in M_{\alpha}\} \cup \{(A, A) \in \mathcal{G}^0 : A \text{ is a minimal infinite emitter}\}.$$

Define

$$X = \mathfrak{p}^{\infty} \cup X_{fin}.$$

Metric in X:

Metric in X:

list the elements of \mathfrak{p} as $\mathfrak{p} = \{p_1, p_2, p_3, \ldots\}$. Then, for $x, y \in X$, we have that

$$d_X(x,y) := \begin{cases} 1/2^i & i \in \mathbb{N} \text{ is the smallest value such that } p_i \text{ is an initial} \\ & \text{segment of one of } x \text{ or } y \text{ but not the other,} \\ 0 & \text{if } x = y. \end{cases}$$
(1)

Definition 3.3.

The shift map is the function $\sigma: X \to X$ defined by

$$\sigma(x) = \begin{cases} \gamma_2 \gamma_3 \dots & \text{if } x = \gamma_1 \gamma_2 \dots \in \mathfrak{p}^{\infty} \\ (\gamma_2 \dots \gamma_n, A) & \text{if } x = (\gamma_1 \dots \gamma_n, A) \in X_{\text{fin}} \text{ and } |x| > 1 \\ (A, A) & \text{if } x = (\gamma_1, A) \in X_{\text{fin}} \\ (A, A) & \text{if } x = (A, A) \in X_{\text{fin}} \text{ and } |x| = 0. \end{cases}$$

• Say $s(f_i) = i$, $r(f_i) = i - 1$ for i = 2, 3, ... and $r(e_1) = \{1, 2, 3, ...\}$.

- Say $s(f_i) = i$, $r(f_i) = i 1$ for i = 2, 3, ... and $r(e_1) = \{1, 2, 3, ...\}$.
- Only one infinite emitter: $A = r(e_1) = \{1, 2, 3, \ldots\}.$

- Say $s(f_i) = i$, $r(f_i) = i 1$ for i = 2, 3, ... and $r(e_1) = \{1, 2, 3, ...\}$.
- Only one infinite emitter: $A = r(e_1) = \{1, 2, 3, \ldots\}.$
- X consists of infinite paths and finite paths of the form

$$(f_1\ldots f_k e_1, A),$$

that "end" at A.

Via partial actions we obtain...

Theorem 4.1.

Let $\mathcal{G}_1, \mathcal{G}_2$ be two ultragraphs such that their shift spaces, X and Y respectively, are conjugate via a conjugacy $\phi : X \to Y$ that preserves length.

Theorem 4.1.

Let $\mathcal{G}_1, \mathcal{G}_2$ be two ultragraphs such that their shift spaces, X and Y respectively, are conjugate via a conjugacy $\phi : X \to Y$ that preserves length. Then $C^*(\mathcal{G}_1)$ and $C^*(\mathcal{G}_2)$ are isomorphic, via an *-isomorphism that intertwines the canonical Gauge actions and maps the commutative C^* -subalgebra of $C^*(\mathcal{G}_1)$, generated by $\{s_{e_1}...s_{e_n}p_As_{e_n}^*...s_{e_1}^*: e_i \in \mathcal{G}_1^1, A \in \mathcal{G}^0\}$, to the corresponding C^* -subalgebra of $C^*(\mathcal{G}_2)$.

Theorem 4.1.

Let $\mathcal{G}_1, \mathcal{G}_2$ be two ultragraphs such that their shift spaces, X and Y respectively, are conjugate via a conjugacy $\phi : X \to Y$ that preserves length. Then $C^*(\mathcal{G}_1)$ and $C^*(\mathcal{G}_2)$ are isomorphic, via an *-isomorphism that intertwines the canonical Gauge actions and maps the commutative C^* -subalgebra of $C^*(\mathcal{G}_1)$, generated by $\{s_{e_1}...s_{e_n}p_As_{e_n}^*...s_{e_1}^*: e_i \in \mathcal{G}_1^1, A \in \mathcal{G}^0\}$, to the corresponding C^* -subalgebra of $C^*(\mathcal{G}_2)$.

•
$$(E^0, E^1, r, s) \rightarrow a$$
 graph.

- $(E^0, E^1, r, s) \rightarrow a$ graph.
- X is the shift space (infinite paths)

•
$$(E^0, E^1, r, s) \rightarrow a$$
 graph.

- X is the shift space (infinite paths)
- $\blacksquare \ \mathbb{F} \to \mathsf{Free}$ group on the edges.

•
$$(E^0, E^1, r, s) \rightarrow a$$
 graph.

- X is the shift space (infinite paths)
- $\blacksquare \ \mathbb{F} \to \mathsf{Free}$ group on the edges.
- For all a and b finite paths (inside \mathbb{F}),

$$X_{ab^{-1}} = \{ \text{paths that begin with } a \}$$

•
$$(E^0, E^1, r, s) \rightarrow a$$
 graph.

- X is the shift space (infinite paths)
- $\blacksquare \ \mathbb{F} \to \mathsf{Free}$ group on the edges.
- For all a and b finite paths (inside \mathbb{F}),

$$X_{ab^{-1}} = \{ \text{paths that begin with } a \}$$

$$h_{ba^{-1}}:X_{ab^{-1}}\to X_{ba^{-1}}$$

Action *h* on (topological) space induces an action α :

$$\alpha_{ba^{-1}}: C(X_{ab^{-1}}) \rightarrow C(X_{ba^{-1}})$$
, such that

$$\alpha_{ba^{-1}}(f) = f \circ h_{ab^{-1}}$$

Action *h* on (topological) space induces an action α :

$$\alpha_{ba^{-1}}: C(X_{ab^{-1}}) \rightarrow C(X_{ba^{-1}})$$
, such that

$$\alpha_{ba^{-1}}(f) = f \circ h_{ab^{-1}}$$

Definition 5.

$$C(X) * \mathbb{F} = \bigoplus_{g \in \mathbb{F}} C(X_g) = \{\sum_{\text{finite}} f_t \delta_t : f_t \in C(X_t)\}$$

Action *h* on (topological) space induces an action α :

$$\alpha_{ba^{-1}}: C(X_{ab^{-1}}) \rightarrow C(X_{ba^{-1}})$$
, such that

$$\alpha_{ba^{-1}}(f) = f \circ h_{ab^{-1}}$$

Definition 5.

$$C(X) * \mathbb{F} = \bigoplus_{g \in \mathbb{F}} C(X_g) = \{\sum_{\text{finite}} f_t \delta_t : f_t \in C(X_t)\}$$

This is an algebra with pointwise sum and multiplication given by

$$f_t \delta_t * f_s \delta_s = f_t \alpha_t (f_s) \delta_{ts} =$$

Action *h* on (topological) space induces an action α :

$$\alpha_{ba^{-1}}: C(X_{ab^{-1}}) \rightarrow C(X_{ba^{-1}})$$
, such that

$$\alpha_{ba^{-1}}(f) = f \circ h_{ab^{-1}}$$

Definition 5.

$$C(X) * \mathbb{F} = \bigoplus_{g \in \mathbb{F}} C(X_g) = \{\sum_{\text{finite}} f_t \delta_t : f_t \in C(X_t)\}$$

This is an algebra with pointwise sum and multiplication given by

$$f_t \delta_t * f_s \delta_s = f_t \alpha_t (f_s) \delta_{ts} = \alpha_t (\alpha_{t^{-1}} (f_t \cdot f_s) \delta_{ts})$$

Theorem 6.

$$L_{\mathcal{K}}(E) \sim L_{c}(X) * \mathbb{F}$$
 and $C^{*}(E) \sim C(X) \ltimes \mathbb{F}$

Theorem 6.

$$L_{\mathcal{K}}(E) \sim L_{c}(X) * \mathbb{F}$$
 and $C^{*}(E) \sim C(X) \ltimes \mathbb{F}$

Theorem 7.

 $L_c(X) * \mathbb{F}$ is simple iff action is topologically free and minimal iff graph satisfies Condition (L) and there are no hereditary and saturated subsets of the vertices.

Theorem 6.

$$L_{\mathcal{K}}(E) \sim L_{c}(X) * \mathbb{F}$$
 and $C^{*}(E) \sim C(X) \ltimes \mathbb{F}$

Theorem 7.

 $L_c(X) * \mathbb{F}$ is simple iff action is topologically free and minimal iff graph satisfies Condition (L) and there are no hereditary and saturated subsets of the vertices.

Theorem 8.

Let E_1 , E_2 be graphs. The following are equivalent:

- X_{E_1} and X_{E_1} are orbit equivalent.
- There is an isomorphism between $C(X_{E_1}) \ltimes \mathbb{F}_1$ and $C(X_{E_2}) \ltimes \mathbb{F}_2$ that takes $C(X_{E_1})$ to $C(X_{E_2})$.
- The associated partial actions are continuous orbit equivalent.

Path groupoid

- Path groupoid
- Continuous Orbit Equivalence

- Path groupoid
- Continuous Orbit Equivalence
- Full Groups

- Path groupoid
- Continuous Orbit Equivalence
- Full Groups
- Analogues of LPA results

- Path groupoid
- Continuous Orbit Equivalence
- Full Groups
- Analogues of LPA results
- Symbolic Dynamics

- Path groupoid
- Continuous Orbit Equivalence
- Full Groups
- Analogues of LPA results
- Symbolic Dynamics

References I

- M. Boyle, J. Buzzi, and R. Gómez. Almost isomorphism for countable state Markov shifts. J. Reine. Angew. Math. 592, (2006), 23-47.
- M. Boyle, J. Buzzi, and R. Gómez. Good potentials for almost isomorphism of countable state Markov shifts. Stoch. Dyn. 07, (2007), 1-15.
- T. M. Carlsen, N. S. Larsen, Partial actions and KMS states on relative graph C*-algebras. J. Funct. Anal. 271, Issue 8, (2016), 2090-2132.
- V. Cyr and O. Sarig. Spectral gap and transience for Ruelle operators on countable Markov shifts. Commun. Math. Phys. 292(3), (2009), 637-666.
- R. Exel, M. Laca, Cuntz-Krieger algebras for infinite matrices.
 J. Reine Angew. Math. 512, (1999), 119-172.

References II

- D. Fiebig *Factor maps, entropy and fiber cardinality for Markov shifts.* Rocky Mountain J. Math **31**(3), (2001), 955-986.
- FIEBIG, D.. Graphs with pre-assigned Salama entropies and optimal degress. Ergodic Theory Dynam. Systems **23**,(2003), 1093-1124.
- D. Fiebig and Ulf-Rainer Fiebig. Compact factors of countable state Markov shifts. Theoret. Comput. Sci. 270(1), (2002), 935-946.
- FIEBIG, D. AND FIEBIG, U.-R.. Topological Boundaries for Countable State Markov Shifts. Proc. Lond. Math. Soc. s3-70(3), (1995), 625-643.
- FIEBIG, D. AND FIEBIG, U.-R. (2005). Embedding theorems for locally compact Markov shifts. Ergodic Theory Dynam. Systems 25, (2005), 107-131.

References III

- Gonçalves, D. Royer, *Ultragraphs and shift spaces over infinite alphabets*, Bull. Sci. Math., **141**, (2017), 25-45.
- D. Gonçalves, H. Li, D. Royer, Branching systems and general Cuntz-Krieger uniqueness theorem for ultragraph C*-algebras. Internat. J. Math. 27(10), (2016).
- D. Gonçalves and D. Royer, (M+1)-step shift spaces that are not conjugate to M-step shift spaces. Bull. Sci. Math. 139(2), (2015), 178-183.
- D. Gonçalves, M. Sobottka and C. Starling, *Inverse semigroup shifts over countable alphabets*, Semigroup Forum, to appear.
- D. Gonçalves, M. Sobottka and C. Starling, *Sliding block codes between shift spaces over infinite alphabets*. Math. Nachr. 289 (17-18), (2016), 2178-2191.

References IV

- D. Gonçalves, M. Sobottka and C. Starling, Two-sided shift spaces over infinite alphabets. J. Aust. Math. Soc., to appear.
- G. lommi and Y. Yayama. *Almost-additive thermodynamic formalism for countable Markov shifts*. Nonlinearity **25(1)**, (2012).
- B. P. Kitchens.*Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Shifts*, Springer Verlag, (1997).
- D. Lind and B. Marcus, *An introduction to symbolic dynamics and coding*. Cambridge, Cambridge University Press, (1995).
- A. Marrero, Paul S. Muhly, Groupoid and inverse semigroup presentations of ultragraph C*-algebras. Semigroup Forum 77(3), (2008), 399-422.

References V

- R. D. Mauldin and M. Urbański. Gibbs states on the symbolic space over an infinite alphabet. Israel J. Math. 125, 2001, 93-130.
- W. Ott, M. Tomforde and P. Willis, *One-sided shift spaces over infinite alphabets*. New York J. Math. Monographs **5**, (2014).
- A. T. Paterson and A. E. Welch, Tychonoff's theorem for locally compact spaces and an elementary approach to the topology of path spaces. Proc. Amer. Math. Soc. 133, (2005), 2761-2770.
- B. E. Raines and T. Underwood, Scrambled sets in shift spaces on a countable alphabet, Proc. Amer. Math. Soc., 144 (1), (2015), 214-224.
- O. M. Sarig. *Thermodynamic formalism for countable Markov shifts*. Ergodic Theory Dyn. Syst. **19**, (1999), 1565-1593.

References VI

- M. Sobottka and D. Gonçalves A note on the definition of sliding block codes and the Curtis-Hedlund-Lyndon Theorem.
 J. Cell. Autom., J. Cell. Autom. 12, (2017), 209-215.
- M. Tomforde, A unified approach to Exel-Laca algebras and C*-algebras associated to graphs. J. Operator Theory 50, (2003), 345-368.
- M. Tomforde, *Simplicity of ultragraph algebras*. Indiana Univ. Math. J. **52**(4), (2003), 901-926.
- S. B. G. Webster, *The path space of a directed graph*, Proc. Amer. Math. Soc. **142**, (2014), 213-225.