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Coding dynamical systems



Edge shift space

Definition 1.

Given a graph (E 0,E 1, r , s) the associated edge shift space is
defined as

X = {(en) : r(en) = s(en+1)∀n = 1, 2, . . .},

with the prodiscrete topology.

Definition 2.

Metric on X :

d ((en), (fn)) =
1

2j
, where e1 . . . ej−1 = f1 . . . fj−1 and ej 6= fj .
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Li-Yorke Chaos

Let (X , f ) be a dynamical system.

Definition 3.

A pair (x , y) ∈ X × X is called scrambled if

lim sup d(f n(x), f n(y)) > 0 and

lim inf d(f n(x), f n(y)) = 0.

(X , f ) is Li-Yorke chaotic if there exists a uncountable subset of X
such that every pair (x , y) is scrambled.

Example 4.

Full shift on two generators.
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How to define an analogue for infinite alphabets?
Appeared most commonly in the context of countable-state
Markov chains (or equivalently, shifts coming from countable
directed graphs or matrices). Examples of such approach can be
found in [8, 10, 18], [1, 2], etc..
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Infinite alphabet shift spaces

Many approachs to shift spaces over infinite alphabets.

Difficulty: Usually shift spaces are not compact.

Recently Ott, Tomforde and Willis proposed a new approach
to infinite shift spaces, connected to graph C*-algebras, see
[22]:

Exel and Laca propose a shift space associated to an infinite
matrix as the spectrum of a certain commutative algebra, see
[5]

• We want a definition that puts the approaches connected to
graph C*-algebras and topological Markov chains with infinitely
many states under one umbrella.
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Definition 2.1.

An ultragraph is a quadruple G = (G 0,G1, r , s) consisting of two
countable sets G 0,G1, a map s : G1 → G 0, and a map
r : G1 → P(G 0)\{∅}, where P(G 0) stands for the power set of G 0.
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Ultragraph C*-algebra

Definition 2.2.

Let G be an ultragraph. Define G0 to be the smallest subset of
P(G 0) that contains {v} for all v ∈ G 0, contains r(e) for all
e ∈ G1, and is closed under finite unions and non-empty finite
intersections.

Definition 2.3.

The ultragraph algebra C ∗(G) is the universal C ∗-algebra
generated by a family of partial isometries with orthogonal ranges
{se : e ∈ G1} and a family of projections {pA : A ∈ G0} satisfying

1 p∅ = 0, pApB = pA∩B , pA∪B = pA + pB − pA∩B , for all
A,B ∈ G0;

2 s∗e se = pr(e), for all e ∈ G1;

3 ses
∗
e ≤ ps(e) for all e ∈ G1; and

4 pv =
∑

s(e)=v

ses
∗
e whenever 0 < |s−1(v)| <∞.
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Example: Renewal shift

A =


1 1 1 . . .
1 0 0 . . .
0 1 0 . . .
...

. . .



1 2 3 4 5 6 7



Example: Renewal shift

A =


1 1 1 . . .
1 0 0 . . .
0 1 0 . . .
...

. . .



1 2 3 4 5 6 7



The topological space

Definition 3.1.

For each subset A of G 0, let ε (A) be the set {e ∈ G1 : s (e) ∈ A}.
We shall say that a set A in G0 is an infinite emitter whenever
ε (A) is infinite.

Definition 3.2.

Let A ∈ G0. We say that A is a minimal infinite emitter if it is
an infinite emitter that contains no proper subsets (in G0) that are
infinite emitters.
We denote the set of all minimal infinite emitters in r(α) by Mα.
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The topological space

Let
Xfin = {(α,A) ∈ p : |α| ≥ 1 and A ∈ Mα}∪

{(A,A) ∈ G0 : A is a minimal infinite emitter}.

Define
X = p∞ ∪ Xfin.
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The topological space

Metric in X :

list the elements of p as p = {p1, p2, p3, . . .}. Then, for x , y ∈ X ,
we have that

dX (x , y) :=


1/2i i ∈ N is the smallest value such that pi is an initial

segment of one of x or y but not the other,

0 if x = y .

(1)
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The shift map

Definition 3.3.

The shift map is the function σ : X → X defined by

σ(x) =


γ2γ3 . . . if x = γ1γ2 . . . ∈ p∞

(γ2 . . . γn,A) if x = (γ1 . . . γn,A) ∈ Xfin and |x | > 1

(A,A) if x = (γ1,A) ∈ Xfin

(A,A) if x = (A,A) ∈ Xfin and |x | = 0.



Back to the Renewal shift

1 2 3 4 5 6 7

• Say s(fi ) = i , r(fi ) = i − 1 for i = 2, 3, . . . and
r(e1) = {1, 2, 3, . . .}.
• Only one infinite emitter: A = r(e1) = {1, 2, 3, . . .}.
• X consists of infinite paths and finite paths of the form

(f1 . . . fke1,A),

that ”end” at A.
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Via partial actions we obtain...

Theorem 4.1.

Let G1,G2 be two ultragraphs such that their shift spaces, X and
Y respectively, are conjugate via a conjugacy φ : X → Y that
preserves length.

Then C ∗(G1) and C ∗(G2) are isomorphic, via an
*-isomorphism that intertwines the canonical Gauge actions and
maps the commutative C*-subalgebra of C ∗(G1), generated by
{se1 ...senpAs

∗
en
...s∗e1

: ei ∈ G1
1 ,A ∈ G0}, to the corresponding

C*-subalgebra of C ∗(G2).
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Partial Actions

(E 0,E 1, r , s)→ a graph.

X is the shift space (infinite paths)

F→ Free group on the edges.

For all a and b finite paths (inside F),

Xab−1 = {paths that begin with a}

hba−1 : Xab−1 → Xba−1
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Skew ring and partial crossed product

Action h on (topological) space induces an action α :

αba−1 : C (Xab−1)→ C (Xba−1), such that

αba−1(f ) = f ◦ hab−1

Definition 5.

C (X ) ∗ F =
⊕
g∈F

C (Xg ) = {
∑
finite

ftδt : ft ∈ C (Xt)}

This is an algebra with pointwise sum and multiplication given by

ftδt ∗ fsδs = ftαt(fs)δts = αt(αt−1(ft · fs)δts
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Skew ring and partial crossed product

Theorem 6.

LK (E ) ∼ Lc (X ) ∗ F and C ∗(E ) ∼ C (X ) n F

Theorem 7.

Lc(X ) ∗ F is simple iff action is topologically free and minimal iff
graph satisfies Condition (L) and there are no hereditary and
saturated subsets of the vertices.

Theorem 8.

Let E1, E2 be graphs. The following are equivalent:

XE1 and XE1 are orbit equivalent.

There is an isomorphism between C (XE1) n F1 and
C (XE2) n F2 that takes C (XE1) to C (XE2).

The associated partial actions are continuous orbit equivalent.
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