A Talented Monoid view on Lie Bracket algebra arising from Leavill Path Ollgebra

· Alfilgen N. sebandal ·

Jocelyn P. Vilela Roozbeh Hazrat Wolfgang Bock

・ロト ・四ト ・ヨト ・ヨト

 A.N. Sebandal, J.P. Vilela, *The Jordan-Hölder Theorem for monoids with group action*, Journal of Algebra and its Applications. doi.org/10.1142/S0219498823500883. (December 2021).

© R. Hazrat, A.N. Sebandal, J.P. Vilela, *Graphs with disjoint cycles classification via the talented monoid*, Journal of Algebra. 593. 319-340. (November 2021).

© W. Bock, A.N. Sebandal, J.P. Vilela, *A Talented monoid view on Lie Bracket Algebras over Leavitt Path Algebras*, preprint

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let *M* be a monoid and Γ a group. *M* is said to be a Γ -monoid if there is an action of Γ on *M*.

A **Γ**-order ideal of a Γ-monoid *M* is a subset *I* of *M* such that for $\alpha, \beta \in \Gamma$,

$${}^{\alpha}a+{}^{\beta}b\in I\quad\iff\quad a,b\in I.$$

イロト イポト イヨト イヨト

Theorem

Let *I* and *J* be Γ -order-ideals of a commutative monoid *T* with $I \subseteq J$. Then

$$\binom{T}{I} / \binom{J}{I} \cong T / J.$$

Theorem

Let *I* and *J* be Γ -order-ideals of a commutative monoid *T* with $I \subseteq J$. Then

$$\binom{T}{I} / \binom{J}{I} \cong T / J.$$

Theorem

Let *T* be a refinement Γ -monoid and let *Q*, *L* and *N* be Γ -order-ideals of *T* such that $L \subseteq Q$. Then

$$Q/(L+(Q\cap N))\cong (Q+N)/(L+N).$$

イロト イポト イヨト イヨ

A commutative monoid *T* is called *refinement*, if for a + b = c + d, there exist $e_1, e_2, e_3, e_4 \in T$ such that

 $a = e_1 + e_2$, $b = e_3 + e_4$ and $c = e_1 + e_3$, $d = e_2 + e_4$.

A (10) × (10) × (10)

A commutative monoid *T* is called *refinement*, if for a + b = c + d, there exist $e_1, e_2, e_3, e_4 \in T$ such that

$$a = e_1 + e_2$$
, $b = e_3 + e_4$ and $c = e_1 + e_3$, $d = e_2 + e_4$.

[Sebandal, Vilela (2021)]

 $T = \{0, 1, x, y, z, s, b\}$ and an operation (+) on given by

+	0	1	x	y	Z	S	b
0	0	1	x	y	Z	S	b
1	1	1	1	S	S	S	b
x	x	1	1	S	S	S	b
y	y	S	S	y	y	S	b
\boldsymbol{Z}	\boldsymbol{z}	S	S	y	y	S	b
S	S	S	S	S	S	S	b
b	b	b	b	b	b	b	S

A (10) > A (10) > A

+	0	1	х	y	Ζ	S	b
0	0	1	x	y	Z	S	b
1	1	1	1	S	S	S	b
x	x	1	1	S	S	S	b
y	y y	S	S	y	y	S	b
Z	Z	S	S	y	y	S	b
S	s	S	S	S	S	S	b
b	b	b	b	b	b	b	s

$\Gamma = \{0\} \implies T \text{ is a } \Gamma \text{-monoid}$

alfilgen.sebandal@g.msuiit.edu.ph Talented monoids, Leavitt Path Algebras , and Lie Bracke

$$\Gamma = \{0\} \implies T \text{ is a } \Gamma \text{-monoid}$$

1 + 1 = x + x can not be refined $\implies T \text{ is not a refinement monoid}$

$$A = \{0, 1, x\}, B = \{0, y, z\} \implies A \text{ and } B \text{ are}$$

 Γ -order-ideals of T

▲ 同 ト ▲ 三 ト

+	0	1	x	y	Z	S	b
0	0	1	x	y	Z	S	b
1	1	1	1	S	S	S	b
x	x	1	1	s	s	s	b
y	y y	S	S	y	y	S	b
Z	z	S	S	y	y	S	b
S	s	S	S	S	S	S	b
b	b	b	b	b	b	b	S

$$\Gamma = \{0\} \implies T \text{ is a } \Gamma \text{-monoid}$$

$$1 + 1 = x + x \text{ can not be refined} \implies T \text{ is not a refinement monoid}$$

$$A = \{0, 1, x\}, B = \{0, y, z\} \implies A \text{ and } B \text{ are}$$

$$\Gamma \text{-order-ideals of } T$$

$$b + b = s = x + y \in A + B$$

$$\text{but } b \notin A + B$$

alfilgen.sebandal@g.msuiit.edu.ph Talented monoids, Leavitt Path Algebras , and Lie Brackets

イロト イロト イモト イモト

+	0	1	x	y	Z	S	b
0	0	1	x	y	Z	S	b
1	1	1	1	S	S	S	b
x	x	1	1	s	s	s	b
y	y y	S	S	y	y	S	b
Z	Z	S	S	y	y	S	b
S	s	S	S	S	S	S	b
b	b	b	b	b	b	b	S

$$\Gamma = \{0\} \implies T \text{ is a } \Gamma \text{-monoid}$$

$$1 + 1 = x + x \text{ can not be refined} \implies T \text{ is not a refinement monoid}$$

$$A = \{0, 1, x\}, B = \{0, y, z\} \implies A \text{ and } B \text{ are}$$

$$\Gamma \text{-order-ideals of } T$$

$$b + b = s = x + y \in A + B$$

$$but b \notin A + B$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

+	0	1	x	y	Z	S	b
0	0	1	x	y	Z	S	b
1	1	1	1	S	S	S	b
x	x	1	1	s	s	s	b
y	y y	S	S	y	y	S	b
Z	z	S	S	y	y	S	b
S	s	S	S	S	S	S	b
b	b	b	b	b	b	b	S

$$\Gamma = \{0\} \implies T \text{ is a } \Gamma \text{-monoid}$$

$$1 + 1 = x + x \text{ can not be refined} \implies T \text{ is not a refinement monoid}$$

$$A = \{0, 1, x\}, B = \{0, y, z\} \implies A \text{ and } B \text{ are}$$

$$\Gamma \text{-order-ideals of } T$$

$$b + b = s = x + y \in A + B \implies A + B \text{ is not a } \Gamma \text{-order-ideal}$$

$$\text{but } b \notin A + B$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Theorem

Let *T* be a **refinement** Γ -monoid and let *Q*, *L* and *N* be Γ -order-ideals of *T* such that $L \subseteq Q$. Then

$$Q/(L+(Q\cap N)) \cong (Q+N)/(L+N).$$

A (1) > A (1) > A

Let *I* be a Γ -order-ideal of *T*. We say

- (i) *I* is a *cyclic ideal* if for any $x \in I$, there is an $\alpha \in \Gamma$ such that ${}^{\alpha}x = x$;
- (ii) *I* is a *comparable ideal* if for any $x \in I$, there is an $\alpha \in \Gamma$ such that ${}^{\alpha}x > x$;
- (iii) *I* is a *non-comparable ideal* if for any $x \in I$, and any $\alpha \in \Gamma$, we have ${}^{\alpha}x \parallel x$.

() > < () > < () >

Let I be a Γ -order-ideal of T. We say

- (i) *I* is a *cyclic ideal* if for any $x \in I$, there is an $\alpha \in \Gamma$ such that ${}^{\alpha}x = x$;
- (ii) *I* is a *comparable ideal* if for any $x \in I$, there is an $\alpha \in \Gamma$ such that ${}^{\alpha}x > x$;
- (iii) *I* is a *non-comparable ideal* if for any $x \in I$, and any $\alpha \in \Gamma$, we have ${}^{\alpha}x \parallel x$.

 $X \ge y \iff X = y + \alpha$ for some α

Example

Let $T = \mathbb{N} \oplus \mathbb{N} \oplus \mathbb{N} \oplus \mathbb{N}$ be a free abelian monoid with the action of \mathbb{Z} on T defined by ${}^{1}(a, b, c, d) = (d, a, b, c)$ and extended to \mathbb{Z} .

$$x \in T \implies {}^4x = x$$

Then *T* is a cyclic \mathbb{Z} -monoid.

Let *T* be a Γ -order-ideal. A Γ -series for *T* is a sequence of Γ -order-ideals

$$0 = I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n = T.$$
(*)

Furthermore, we say (*) is a Γ -composition series if for each $i = 0, 1 \cdots, n - 1, I_i \subsetneq I_{i+1}$ and each of quotients I_{i+1}/I_i are simple Γ -monoids.

・ 伊 ト ・ ヨ ト ・

Let *T* be a Γ -order-ideal. A Γ -series for *T* is a sequence of Γ -order-ideals

$$0 = I_0 \subseteq I_1 \subseteq I_2 \subseteq \dots \subseteq I_n = T.$$
(*)

Furthermore, we say (*) is a Γ -composition series if for each $i = 0, 1 \cdots, n - 1, I_i \subsetneq I_{i+1}$ and each of quotients I_{i+1}/I_i are simple Γ -monoids.

We further say a composition series is of *mixed type* of certain kinds if the simple quotients are those given kinds.

イロト イポト イヨト イヨト

Jordan-Hölder Theorem

Two Γ-series of a refinement Γ-monoid *T* have equivalent refinement. Thus, any Γ-composition series are equivalent and a Γ-monoid having a composition series determines a unique list of simple Γ-monoids.

A *directed graph E* is a tuple (E^0, E^1, r, s) where E^0 and E^1 are sets and *r*, *s* are maps from E^1 to E^0 . The elements of E^0 are called *vertices* and the elements of E^1 *edges*. We think of each $e \in E^1$ as an edge pointing from *s*(*e*) to *r*(*e*), that is, *s*(*e*) is the *source* of *e* and *r*(*e*) is the *range* of *e*. A graph *E* is *finite* if E^0 and E^1 are both finite.

Figure : A graph E

alfilgen.sebandal@g.msuiit.edu.ph Talented monoids, Leavitt Path Algebras , and Lie Bracket

A subset $H \subseteq E^0$ is said to be *hereditary* if for any $e \in E^1$, we have that $s(e) \in H$ implies $r(e) \in H$.

A subset $H \subseteq E^0$ is said to be *hereditary* if for any $e \in E^1$, we have that $s(e) \in H$ implies $r(e) \in H$.

イロト イポト イヨト イヨ

A subset $H \subseteq E^0$ is said to be *hereditary* if for any $e \in E^1$, we have that $s(e) \in H$ implies $r(e) \in H$.

A subset $H \subseteq E^0$ is said to be *saturated* if for a regular vertex $v, r(s^{-1}(v)) \subseteq H$, then $v \in H$.

イロト イポト イヨト イヨト

Leavitt Path Algebra

For a row-finite graph *E* and a ring *R* with identity, we define the *Leavitt path algebra* of *E*, denoted by $L_R(E)$, to be the algebra generated by the sets { $v : v \in E^0$ }, { $\alpha : \alpha \in E^1$ } and { $\alpha^* : \alpha \in E^1$ } with coefficients in *R*, subject to the relations

(V)
$$v_i v_j = \delta_{i,j} v_i$$
 for every $v_i, v_j \in E^0$;
(E) $s(e)e = e = er(e)$ and $r(e)e^* = e^* = e^*s(e)$ for all $e \in E^1$;
(CK1) $e^*e' = \delta_{e,e'}r(ea)$ for all $e, e' \in E^1$;
(CK2)
 $\sum ee^* = v$

$$\sum_{\{\alpha \in E^1: s(e) = v\}} ee^* =$$

for every $v \in E^0$ which is not a sink.

Gelfand-Kirillov Dimension

Let *A* be an algebra (not necessarily unital), which is generated by a finite dimensional subspace *V*. Let V^n denote the span of all products $v_1v_2 \cdots v_n$, $v_i \in V$, $k \leq n$. Then $V = V^1 \subseteq V^2 \subseteq \cdots$,

$$A = \bigcup_{n \ge 1} V^n$$
 and $g_{V(n)} = \dim V^n < \infty$.

Given the functions $f, g : \mathbb{N} \to \mathbb{R}^+$, if there exists $c \in \mathbb{N}$ such that $f(n) \leq cg(cn)$ for all $n \in \mathbb{N}$ we call *f* asymptotically bounded by *g*. If *f* is asymptotically bounded by *g* and *g* is asymptotically bounded by *f*, the functions *f* and *g* are said to be asymptotically equivalent denoted by $f \sim g$. The equivalence class of *f* under \sim is called the *growth* of *f*.

イロト イポト イヨト イヨ

If *W* is another finite-dimensional subspace that generated *A*, then $g_{V(n)} \sim g_{W(n)}$.

If $g_{(V(n))}$ is polynomially bounded, then the *Gelfand-Kirillov dimension* of *A* is defined as

$$\operatorname{GKdim} A = \limsup_{n \to \infty} \frac{\ln g_{V(n)}}{\ln n}.$$

The GK-dimension does not depend on a choice of the generating space *V* as long as $\dim V < \infty$. If the growth of *A* is not polynomially bounded, then GKdim $A = \infty$.

- 4 個 ト 4 国 ト 4 国

Graph Monoid

Let *E* be a row-finite directed graph. The *graph monoid* of *E*, denoted by M_E , is the abelian monoid generated by $\{v : v \in E^0\}$, subject to

$$v = \sum_{e \in s^{-1}(v)} r(e)$$

for every $v \in E^0$ that is not a sink.

< 個 → < 三 →

Talented Monoid

Let *E* be a row-finite graph. The *talented monoid* of *E*, denoted by T_E , is the abelian monoid generated by $\{v(i) : v \in E^0, i \in \mathbb{Z}\}$, subject to

$$v(i) = \sum_{e \in s^{-1}(v)} r(e)(i+1)$$

for every $i \in \mathbb{Z}$ and every $v \in E^0$ that is not a sink.

The additive group \mathbb{Z} of integers acts on T_E via monoid automorphisms by shifting indices:

 $^{n}v(i) = v(i+n)$

 \rightarrow extends to an action of \mathbb{Z} on T_E .

A (10) > A (10) > A

The additive group \mathbb{Z} of integers acts on T_E via monoid automorphisms by shifting indices:

 $^{n}v(i) = v(i+n)$

 \rightarrow extends to an action of \mathbb{Z} on T_E .

 \Rightarrow *T*_{*E*} is a \mathbb{Z} -monoid

 $V \in E^{\circ} \longrightarrow V := V(0) = {}^{\circ}V$ $\implies V(0) = {}^{\circ}V$

The additive group \mathbb{Z} of integers acts on T_E via monoid automorphisms by shifting indices:

 $^{n}v(i) = v(i+n)$

 \rightarrow extends to an action of \mathbb{Z} on T_E .

 \Rightarrow *T*^{*E*} is a refinement **Z**-monoid

A (10) > A (10) > A

EXAMPLE:

イロン 不聞と 不良と 不良とう

u(o) = v(1) = w(2) + u(2) $\implies u 7^{2} u$

alfilgen.sebandal@g.msuiit.edu.ph Talented monoids, Leavitt Path Algebras , and Lie Brackets

イロン 不聞と 不良と 不良とう

- T-monoid
- · Leavilt Rath algebra
- ME
- TE refinement 72-monoid

イロト 不得 トイヨト イヨト ニヨー のくや

alfilgen.sebandal@g.msuiit.edu.ph Talented monoids, Leavitt Path Algebras , and Lie Bracket

ヘロト 人間 トイヨト イヨト

- of E
- L(TE) TL-order-ideals of TE
- 2^{gr}(lx(E)) graded ideal of Lx(E)

 $\mathcal{L}(T_{E}) \xleftarrow{\cong} \mathcal{L}(E) \xrightarrow{\cong} \mathcal{L}^{\mathfrak{S}}(L_{E}(E))$ $\langle H \rangle \xleftarrow{H} H \longmapsto J(H)$

イロト (理) (ヨ) (ヨ) (ヨ) () ()

• Chain of cycles $C_1 \Rightarrow C_2 \Rightarrow \cdots \Rightarrow C_n$

dy - maximum length of a chain of cycles

• d_2 - maximum length of a chain of ayder with an exit \Rightarrow $d_1 \ge d_2$

Let *E* be a finite graph.

alfilgen.sebandal@g.msuiit.edu.ph Talented monoids, Leavitt Path Algebras , and Lie Bracket

I → I → I → I → I

Let *E* be a finite graph.

(1) *GKdim* $L_K(E) < \infty \Leftrightarrow E$ is a graph with disjoint cycles.

A (10) > A (10) > A

Let *E* be a finite graph.

- (1) *GKdim* $L_K(E) < \infty \Leftrightarrow E$ is a graph with disjoint cycles.
- (2) If d_1 is the maximal length of a chain of cycles in *E*, and d_2 is the maximal length of chain of cycles with an exit, then

 $GKdim L_K(E) = \max(2d_1 - 1, 2d_2).$

イロト イポト イヨト イヨ

Let *E* be a finite graph.

- (1) *GKdim* $L_K(E) < \infty \Leftrightarrow E$ is a graph with disjoint cycles.
- (2) If *d*₁ is the maximal length of a chain of cycles in *E*, and *d*₂ is the maximal length of chain of cycles with an exit, then

$$GKdim L_K(E) = \max(2d_1 - 1, 2d_2).$$

$$GKdim L_K(E) = \begin{cases} 2d_1 & \text{if } d_1 = d_2 \\ 2d_1 - 1 & \text{if } d_1 \neq d_2. \end{cases}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

GKdim LK(E) = 3

 $d_{L}(F) = 2$ $d_{E}(F) = 2$ $G(Cdim L_{E}(F) = 4$

イロト 不得 トイヨト イヨト

3

alfilgen.sebandal@g.msuiit.edu.ph Talented monoids, Leavitt Path Algebras , and Lie Brackets

イロト イ理ト イヨト イヨト

Let *E* be a finite graph, $L_K(E)$ its associated Leavitt path algebra and T_E its talented monoid. Then the following are equivalent.

A (10) F (10) F (10)

Let *E* be a finite graph, $L_K(E)$ its associated Leavitt path algebra and T_E its talented monoid. Then the following are equivalent.

(1) E is a graph with disjoint cycles; geometry

A (10) F (10) F (10)

Let *E* be a finite graph, $L_K(E)$ its associated Leavitt path algebra and T_E its talented monoid. Then the following are equivalent.

- (1) *E* is a graph with disjoint cycles;
- (2) T_E has a composition series of cyclic and non-comparable types; monoid dructure of T_E

A (10) > A (10) > A

Let *E* be a finite graph, $L_K(E)$ its associated Leavitt path algebra and T_E its talented monoid. Then the following are equivalent.

- (1) E is a graph with disjoint cycles;
- (2) T_E has a composition series of cyclic and non-comparable types; algebraic structure
- (3) $L_K(E)$ has a finite GK-dimension.

alfilgen.sebandal@g.msuiit.edu.ph Talented monoids, Leavitt Path Algebras, and Lie Brackets

A (10) × A (10) × A (10)

 $d_1 = 3$

Consider the graphs with disjoint cycles below.

▲ 御 → → 三 →

 $GKdim L_K(E) = 3$

 $GKdim L_K(F) = 4$

Consider the graphs with disjoint cycles below.

 $GKdim L_K(E) = 3$

 $GKdim L_K(F) = 4$

 $T_E \ncong T_F$

• T_E has a periodic element ($^1w = w$)

• T_F has no periodic elements (otherwise it has to have a cycle with no exit).

However, we have the following composition series for T_E and T_F , which are equivalent:

$$\begin{aligned} \langle z \rangle \subset \langle z, w \rangle \subset T_E \\ \langle z \rangle \subset \langle z, w \rangle \subset T_F. \end{aligned}$$

-

Definition 10

Let *T* be a Γ -monoid. The *upper cyclic series* of *T* is a chain of Γ -order-ideals

$$0=I_0\subset I_1\subset I_2\subset\cdots\subset I_n,$$

where I_{i+1}/I_i is the largest cyclic ideal of T/I_i , $0 \le i \le n - 1$. We call I_n the *leading ideal* of the series and denote n by $l_c(T)$.

A (10) F (10) F (10)

Let *E* be a finite graph with disjoint cycles, $L_K(E)$ its associated Leavitt path algebra and T_E its talented monoid.

- S largest non-comparable Γ -order-ideal
- *I* leading ideal of the upper cyclic series of T_E

Let *E* be a finite graph with disjoint cycles, $L_K(E)$ its associated Leavitt path algebra and T_E its talented monoid.

- S largest non-comparable Γ -order-ideal
- *I* leading ideal of the upper cyclic series of T_E

•
$$d_1 = l_c(T_E/S)$$

•
$$d_2 = l_c (T_E/S + I).$$

Let *E* be a finite graph with disjoint cycles, $L_K(E)$ its associated Leavitt path algebra and T_E its talented monoid.

- S largest non-comparable Γ -order-ideal
- *I* leading ideal of the upper cyclic series of T_E

•
$$d_1 = l_c(T_E/S)$$

•
$$d_2 = l_c (T_E/S + I).$$

Then

$$GKdim L_K(E) = \begin{cases} 2d_1 & \text{if } d_1 = d_2 \\ 2d_1 - 1 & \text{if } d_1 \neq d_2. \end{cases}$$

A (10) F (10) F (10)

Corollary

Let *E* and *F* be finite graphs.

$$K_0^{gr}(L_K(E))\cong K_0^{gr}(L_K(F)) \implies GKdim \ L_K(E)=GKdim \ L_K(F).$$

alfilgen.sebandal@g.msuiit.edu.ph Talented monoids, Leavitt Path Algebras , and Lie Bracket

イロト イロト イヨト イ

-

alfilgen.sebandal@g.msuiit.edu.ph Talented monoids, Leavitt Path Algebras , and Lie Bracket

ヘロト 人間 トイヨト イヨト

alfilgen.sebandal@g.msuiit.edu.ph Talented monoids, Leavitt Path Algebras , and Lie Brackets

イロト イポト イヨト イヨト

Lie Algebra

A *Lie algebra* over a field *K* is a *K*-vector space *L* together with a map

$$[-,-]:L\times L\longrightarrow L$$

such that

(1)
$$[-, -]$$
 is bilinear,
(2) $[x, x] = 0$ for all $x \in L$,
(3) $[x, [y, z]] + [y, [z, x]] + [[z, [x, y]]] = 0$ for all $x, y, z \in L$.

▲ 御 → → 三 →

Let *K* be a field and *A* an associative *K*-algebra.

イロト イヨト イヨト イ

Lie Solvable and Lie Nilpotent

alfilgen.sebandal@g.msuiit.edu.ph Talented monoids, Leavitt Path Algebras , and Lie Bracket

A D F A B F A B F

Lie Solvable and Lie Nilpotent

Let (L, [-, -]) be a Lie algebra. Define

$$L = L^{(0)}$$

= L⁰
$$L^{(n)} = [L^{(n-1)}, L^{(n-1)}]$$

$$L^{n} = [L, L^{n-1}]$$

for every $n \ge 1$.

A (10) > A (10) > A

Lie Solvable and Lie Nilpotent

Let (L, [-, -]) be a Lie algebra. Define

$$L = L^{(0)}$$

= L⁰
$$L^{(n)} = [L^{(n-1)}, L^{(n-1)}]$$

$$L^{n} = [L, L^{n-1}]$$

for every $n \ge 1$. Then *L* is called *solvable* (resp. *nilpotent*) of index *n* if *n* is the minimal integer such that $L^{(n)} = 0$ (resp. $L^n = 0$).

A (10) > A (10) > A

Lie Solvable and Lie Nilpotent

Let (L, [-, -]) be a Lie algebra. Define

$$L = L^{(0)}$$

= L⁰
$$L^{(n)} = [L^{(n-1)}, L^{(n-1)}]$$

$$L^{n} = [L, L^{n-1}]$$

for every $n \ge 1$. Then *L* is called *solvable* (resp. *nilpotent*) of index *n* if *n* is the minimal integer such that $L^{(n)} = 0$ (resp. $L^n = 0$).

The associative algebra *A* is called *Lie solvable* (resp. *Lie nilpotent*) of index *n* if its associated Lie algebra is solvable (resp. nilpotent) of index *n*.

Let *K* be an arbitrary field and *E* a finite graph such that $L_K(E)$ is Lie solvable. Then

alfilgen.sebandal@g.msuiit.edu.ph Talented monoids, Leavitt Path Algebras , and Lie Brackets

Let *K* be an arbitrary field and *E* a finite graph such that $L_K(E)$ is Lie solvable. Then

T_E has a composition series of cyclic and noncomparable types.

Let *K* be an arbitrary field and *E* a finite graph such that $L_K(E)$ is Lie solvable. Then

- *T_E* has a composition series of cyclic and noncomparable types.
- $GKdim L_K(E) \leq 1.$

() > < () > < () >

Let *K* be an arbitrary field and *E* a finite graph. Then the following hold:

alfilgen.sebandal@g.msuiit.edu.ph Talented monoids, Leavitt Path Algebras , and Lie Bracket

э

Let *K* be an arbitrary field and *E* a finite graph. Then the following hold:

(i) $\operatorname{char}(K) = 2$

 $L_K(E)$ is Lie solvable \Leftrightarrow *GKdim* $L_K(E) \le 1$ and one of the following conditions is satisfied: for every vertex $v \in E$, we have either

A B > A B >

Let *K* be an arbitrary field and *E* a finite graph. Then the following hold:

(i) char(K) = 2

 $L_K(E)$ is Lie solvable \Leftrightarrow *GKdim* $L_K(E) \le 1$ and one of the following conditions is satisfied: for every vertex $v \in E$, we have either

(a) $\langle v \rangle$ is a minimal non-comparable ideal,

Let *K* be an arbitrary field and *E* a finite graph. Then the following hold:

(i) char(K) = 2

 $L_K(E)$ is Lie solvable \Leftrightarrow *GKdim* $L_K(E) \leq 1$ and one of the following conditions is satisfied: for every vertex $v \in E$, we have either

(a) $\langle v \rangle$ is a minimal non-comparable ideal,

(b) or a cyclic ideal with $|\langle v \rangle \cap E^0| \le 2$,

4 D N 4 A N 4 B N

Let *K* be an arbitrary field and *E* a finite graph. Then the following hold:

(i) char(K) = 2

 $L_K(E)$ is Lie solvable \Leftrightarrow *GKdim* $L_K(E) \leq 1$ and one of the following conditions is satisfied: for every vertex $v \in E$, we have either

(a) $\langle v \rangle$ is a minimal non-comparable ideal,

(b) or a cyclic ideal with $|\langle v \rangle \cap E^0| \le 2$,

(c) or for every $e \in s^{-1}(v)$, $r(e) \parallel w$ as elements of M_E for every $w \neq v$.

```
(ii) char(K) \neq 2
```

 $L_K(E)$ is Lie solvable \Leftrightarrow *GKdim* $L_K(E) \le 1$ and for every $v \in E^0$, $\langle v \rangle \cap E^0 = \{v\}$.

Let *K* be a field and *E* be a finite graph.

 $L_K(E)$ is Lie nilpotent \Leftrightarrow *GKdim* $L_K(E) \le 1$ and for every $v \in E^0$, $\langle v \rangle \cap E^0 = \{v\}$.

• • • • • • • • • • • •

alfilgen.sebandal@g.msuiit.edu.ph Talented monoids, Leavitt Path Algebras , and Lie Bracket

イロト イポト イヨト イヨト

æ

alfilgen.sebandal@g.msuiit.edu.ph Talented monoids, Leavitt Path Algebras , and Lie Brackets

イロト イロト イモト イモト

æ

We call a vertex v in a connected graph E a *balloon* over a nonempty set $W \subseteq E^0$ if (i) $v \notin W$

イロト イポト イヨト イヨト

We call a vertex v in a connected graph E a *balloon* over a nonempty set $W \subseteq E^0$ if

- (i) *v* ∉ *W*
- (ii) there is a loop $C \in E(v, v)$

マロト マヨト マヨ

We call a vertex v in a connected graph E a *balloon* over a nonempty set $W \subseteq E^0$ if (i) $v \notin W$ (ii) there is a loop $C \in E(v, v)$

(iii) $E(v, W) \neq \emptyset$

(4 個) トイヨト イヨト

We call a vertex v in a connected graph E a *balloon* over a nonempty set $W \subseteq E^0$ if

- (i) *v* ∉ *W*
- (ii) there is a loop $C \in E(v, v)$
- (iii) $E(v, W) \neq \emptyset$
- (iv) $E(v, E^0) = \{C\} \cup E(v, W)$

・ 何 ト ・ ヨ ト ・ ヨ

We call a vertex v in a connected graph E a *balloon* over a nonempty set $W \subseteq E^0$ if

- (i) *v* ∉ *W*
- (ii) there is a loop $C \in E(v, v)$
- (iii) $E(v, W) \neq \emptyset$
- (iv) $E(v, E^0) = \{C\} \cup E(v, W)$
- (v) $E(E^0, v) = \{C\}.$

A (10) > A (10) > A

Let *E* be a connected graph and $W \subseteq E^0$. A vertex $v \notin W$ is a balloon over *W* if and only if

alfilgen.sebandal@g.msuiit.edu.ph Talented monoids, Leavitt Path Algebras , and Lie Brackets

Let *E* be a connected graph and $W \subseteq E^0$. A vertex $v \notin W$ is a balloon over *W* if and only if

(i) $\langle E \setminus \{v\} \rangle$ is the maximal \mathbb{Z} -order-ideal of T_E which does not contain v;

Let *E* be a connected graph and $W \subseteq E^0$. A vertex $v \notin W$ is a balloon over *W* if and only if

- (i) $\langle E \setminus \{v\} \rangle$ is the maximal \mathbb{Z} -order-ideal of T_E which does not contain v;
- (ii) $r(s^{-1}(v)) \setminus W = \{v\};$

A (B) > A (B) > A

Let *E* be a connected graph and $W \subseteq E^0$. A vertex $v \notin W$ is a balloon over *W* if and only if

- (i) $\langle E \setminus \{v\} \rangle$ is the maximal \mathbb{Z} -order-ideal of T_E which does not contain v;
- (ii) $r(s^{-1}(v)) \setminus W = \{v\};$

 \checkmark

(iii) $T_{E/H}$ is simple cyclic.

A (10) F (10) F (10)

Let *E* be connected row-finite graph with $L_K(E)$ not simple. [$L_K(E), L_K(E)$] is simple \Leftrightarrow for every vertex $v \notin I$ for some \mathbb{Z} -order-ideal *I*, Theorem \checkmark (i)-(iii) are satisfied and

$$\sum_{w \in r(E(v,W))} w \in [L_K(W), L_K(W)]$$

where $W = E^{\circ} \cap J$, *J* the minimal non-cyclic \mathbb{Z} -order-ideal of T_E .

イロト イポト イヨト イヨ

Theorem Let *E* be a finite graph. Then the following is equivalent:

alfilgen.sebandal@g.msuiit.edu.ph Talented monoids, Leavitt Path Algebras , and Lie Bracket

Let *E* be a finite graph. Then the following is equivalent:

(i) $[L_K(E), L_K(E)]$ is simple and $L_K(E)$ is graded simple.

・ 何 ト ・ ヨ ト ・ ヨ

Let *E* be a finite graph. Then the following is equivalent:

(i) [L_K(E), L_K(E)] is simple and L_K(E) is graded simple.
(ii) L_K(E) is simple and

$$1_{L_K(E)} = \sum_{v \in E^0} v \notin [L_K(E), L_K(E)].$$

・ 何 ト ・ ヨ ト ・ ヨ

References

[1] G. Abrams, P. Ara, M. Siles Molina, *Leavitt Path Algebras*, Lecture Notes in Mathematics, vol. 2191, Springer Verlag, 2017.

[2] A. Alahmedi, H. Alsulami, S.K. Jain, E. Zelmanov, *Leavitt path algebras of finite Gelfand-Kirillov dimension*, Journal of Algebra and Its Applications, **11**, No. 06, 1250225 (2012).

[3] R. Hazrat, H. Li, *The talented monoid of a Leavitt path algebra*, Journal of Algebra 547 (2020) 430-455.

[4] R. Hazrat, A.N. Sebandal, J.P. Vilela, *Graphs with disjoint cycles classification via the talented monoid*, Journal of Algebra. 593 (2022) 319-340.

[5] A.N. Sebandal, J.P. Vilela, *The Jordan-Hlder Theorem for monoids with group action*, Journal of Algebra and its Applications. doi.org/10.1142/S0219498823500883.