Compositions in $\operatorname{Mnd}(\mathcal{K})$

The horizontal composition of 1-cells:
$\left(X, \psi_{T, X}\right):(\mathcal{A}, T) \rightarrow\left(\mathcal{A}^{\prime}, T^{\prime}\right)$ with $\psi_{T, X}: T^{\prime} X \rightarrow X T$

Compositions in $\operatorname{Mnd}(\mathcal{K})$

The horizontal composition of 1-cells:
$\left(X, \psi_{T, X}\right):(\mathcal{A}, T) \rightarrow\left(\mathcal{A}^{\prime}, T^{\prime}\right)$ with $\psi_{T, X}: T^{\prime} X \rightarrow X T$ and $\left(Y, \psi_{T^{\prime}, Y}\right):\left(\mathcal{A}^{\prime}, T^{\prime}\right) \rightarrow\left(\mathcal{A}^{\prime \prime}, T^{\prime \prime}\right)$ with $\psi_{T^{\prime}, Y}: T^{\prime \prime} Y \rightarrow Y T^{\prime}$,

Compositions in $\operatorname{Mnd}(\mathcal{K})$

The horizontal composition of 1-cells:
$\left(X, \psi_{T, X}\right):(\mathcal{A}, T) \rightarrow\left(\mathcal{A}^{\prime}, T^{\prime}\right)$ with $\psi_{T, X}: T^{\prime} X \rightarrow X T$ and $\left(Y, \psi_{T^{\prime}, Y}\right):\left(\mathcal{A}^{\prime}, T^{\prime}\right) \rightarrow\left(\mathcal{A}^{\prime \prime}, T^{\prime \prime}\right)$ with $\psi_{T^{\prime}, Y}: T^{\prime \prime} Y \rightarrow Y T^{\prime}$, is given by:

$$
\left(Y, \psi_{T^{\prime}, Y}\right)\left(X, \psi_{T, X}\right)=\left(Y X, \psi_{T, Y X}\right)=\left(Y X, \begin{array}{c}
\left.\begin{array}{c}
T^{\prime \prime} Y X \\
\psi_{T^{\prime}, Y} \mid \\
\mid \psi_{T, X}
\end{array}\right) . \\
Y \times T
\end{array}\right) .
$$

Compositions in $\operatorname{Mnd}(\mathcal{K})$

The horizontal composition of 1-cells: $\left(X, \psi_{T, X}\right):(\mathcal{A}, T) \rightarrow\left(\mathcal{A}^{\prime}, T^{\prime}\right)$ with $\psi_{T, X}: T^{\prime} X \rightarrow X T$ and $\left(Y, \psi_{T^{\prime}, Y}\right):\left(\mathcal{A}^{\prime}, T^{\prime}\right) \rightarrow\left(\mathcal{A}^{\prime \prime}, T^{\prime \prime}\right)$ with $\psi_{T^{\prime}, Y}: T^{\prime \prime} Y \rightarrow Y T^{\prime}$, is given by:

$$
\left(Y, \psi_{T^{\prime}, Y}\right)\left(X, \psi_{T, X}\right)=\left(Y X, \psi_{T, Y X}\right)=\left(Y X, \begin{array}{c}
\left.\begin{array}{c}
T^{\prime \prime} Y X \\
\psi_{T^{\prime}, Y} \mid \\
\mid \psi_{T, X}
\end{array}\right) . \\
Y \times T
\end{array}\right) .
$$

- The vertical and horizontal composition of 2-cells is given as in \mathcal{K}.

Compositions in $\operatorname{Mnd}(\mathcal{K})$

The horizontal composition of 1-cells:
$\left(X, \psi_{T, X}\right):(\mathcal{A}, T) \rightarrow\left(\mathcal{A}^{\prime}, T^{\prime}\right)$ with $\psi_{T, X}: T^{\prime} X \rightarrow X T$ and $\left(Y, \psi_{T^{\prime}, Y}\right):\left(\mathcal{A}^{\prime}, T^{\prime}\right) \rightarrow\left(\mathcal{A}^{\prime \prime}, T^{\prime \prime}\right)$ with $\psi_{T^{\prime}, Y}: T^{\prime \prime} Y \rightarrow Y T^{\prime}$, is given by:

$$
\left(Y, \psi_{T^{\prime}, Y}\right)\left(X, \psi_{T, X}\right)=\left(Y X, \psi_{T, Y X}\right)=\left(Y X, \begin{array}{c}
\left.\begin{array}{c}
T^{\prime \prime} Y x \\
\psi_{T^{\prime}, Y} \mid \\
\mid \psi_{T, X}
\end{array}\right) . \\
Y \times T
\end{array}\right) .
$$

- The vertical and horizontal composition of 2-cells is given as in \mathcal{K}.
- The identity 1 -cell on a 0 -cell (\mathcal{A}, T) is given by: $\left(\operatorname{ld}_{\mathcal{A}}, i d_{T}\right):(\mathcal{A}, T) \rightarrow(\mathcal{A}, T)$.

Compositions in $\operatorname{Mnd}(\mathcal{K})$

The horizontal composition of 1-cells:
$\left(X, \psi_{T, X}\right):(\mathcal{A}, T) \rightarrow\left(\mathcal{A}^{\prime}, T^{\prime}\right)$ with $\psi_{T, X}: T^{\prime} X \rightarrow X T$ and $\left(Y, \psi_{T^{\prime}, Y}\right):\left(\mathcal{A}^{\prime}, T^{\prime}\right) \rightarrow\left(\mathcal{A}^{\prime \prime}, T^{\prime \prime}\right)$ with $\psi_{T^{\prime}, Y}: T^{\prime \prime} Y \rightarrow Y T^{\prime}$, is given by:

$$
\left(Y, \psi_{T^{\prime}, Y}\right)\left(X, \psi_{T, X}\right)=\left(Y X, \psi_{T, Y X}\right)=\left(Y X, \begin{array}{c}
\left.\begin{array}{c}
T^{\prime \prime} Y X \\
\psi_{T^{\prime}, Y} \mid \\
\left|\psi_{T, X}\right|
\end{array}\right) . \\
Y \times T
\end{array}\right) .
$$

- The vertical and horizontal composition of 2-cells is given as in \mathcal{K}.
- The identity 1 -cell on a 0 -cell (\mathcal{A}, T) is given by: $\left(\operatorname{Id}_{\mathcal{A}}, i d_{T}\right):(\mathcal{A}, T) \rightarrow(\mathcal{A}, T)$.
- The identity 2 -cell on a 1-cell $\left(X, \psi_{T, X}\right):(\mathcal{A}, T) \rightarrow\left(\mathcal{A}^{\prime}, T^{\prime}\right)$ is given by $i d_{X}$.

