Bicategories,
 2-monads, enriched and internal categories

Bojana Femić

(minicourse, advanced)
Cimpa School
"From Dynamics to Algebra and Rep. Theory and Back"

17 February 2022 (Third class)
Mathematical Institute of
Serbian Academy of Sciences and Arts
Belgrade (Serbia)

Overview of the 2 nd class

- categories and monoidal categories
- bicategories and 2-categories
- strictification theorems
- double categories (as specific internal categories)
- monads and 2-monads
- internal categories (as specific 2-monads)
- enriched categories and when they induce internal categories
- 2-monads in the bicategories of spans and matrices
- double category of monads (why "vertical morphisms" of monads are useful)

Internal categories

Recall: the bicategory $\operatorname{Span}(\mathcal{C})$ of spans in \mathcal{C} with pullbacks

[Benaboú, 1967. (p.22)]
Let \mathcal{C} be a category with pullbacks.

Recall: the bicategory $\operatorname{Span}(\mathcal{C})$ of spans in \mathcal{C} with pullbacks

[Benaboú, 1967. (p.22)]
Let \mathcal{C} be a category with pullbacks.
The bicategory Span(C) consist of:
0-cells: objects of \mathcal{C}

Recall: the bicategory $\operatorname{Span}(\mathcal{C})$ of spans in \mathcal{C} with pullbacks

[Benaboú, 1967. (p.22)]
Let \mathcal{C} be a category with pullbacks.
The bicategory Span(C) consist of:
0-cells: objects of \mathcal{C}
1-cells: spans (diagrams) $A \stackrel{a}{\leftarrow} X \xrightarrow{b} B$ in \mathcal{C}

Recall: the bicategory $\operatorname{Span}(\mathcal{C})$ of spans in \mathcal{C} with pullbacks

[Benaboú, 1967. (p.22)]
Let \mathcal{C} be a category with pullbacks.
The bicategory Span(C) consist of:
0 -cells: objects of \mathcal{C}
1-cells: spans (diagrams) $A \stackrel{a}{\leftarrow} X \xrightarrow{b} B$ in \mathcal{C}
2-cells: commutative diagrams in \mathcal{C}

$$
\begin{array}{rlr}
& A \stackrel{a}{\longleftrightarrow} X \xrightarrow{b} B \\
= & \downarrow & \downarrow \\
A & a^{\prime} & X^{\prime} \xrightarrow{b^{\prime}} \\
\downarrow & B
\end{array}=
$$

Category internal in \mathcal{C} with pullbacks

[Benaboú, 1967. (p.41)]
Let \mathcal{C} be a category with pullbacks.

Category internal in \mathcal{C} with pullbacks

[Benaboú, 1967. (p.41)]
Let \mathcal{C} be a category with pullbacks.
A category internal in $\mathcal{C}:=$ a 2 -monad in the bicategory $\operatorname{Span}(\mathcal{C})$.

Category internal in \mathcal{C} with pullbacks

[Benaboú, 1967. (p.41)]
Let \mathcal{C} be a category with pullbacks.
A category internal in $\mathcal{C}:=$ a 2 -monad in the bicategory $\operatorname{Span}(\mathcal{C})$.
Recall that a 2-monad consists of:

- a 0 -cell \mathcal{A},
- a 1-cell $T: \mathcal{A} \rightarrow \mathcal{A}$,
- 2-cells $\mu: T T \Rightarrow T$ and $\eta: \operatorname{ld}_{\mathcal{A}} \Rightarrow T$
- s.t. axioms hold:

Category internal in \mathcal{C} with pullbacks

[Benaboú, 1967. (p.41)]
Let \mathcal{C} be a category with pullbacks.
A category internal in $\mathcal{C}:=$ a 2 -monad in the bicategory $\operatorname{Span}(\mathcal{C})$.
A 2-monad in $\operatorname{Span}(\mathcal{C})$ consists of:

- a 0 -cell \mathcal{A}, (object of $\mathcal{C}: X_{0}$)

Category internal in \mathcal{C} with pullbacks

[Benaboú, 1967. (p.41)]
Let \mathcal{C} be a category with pullbacks.
A category internal in $\mathcal{C}:=$ a 2 -monad in the bicategory $\operatorname{Span}(\mathcal{C})$.
A 2-monad in $\operatorname{Span}(\mathcal{C})$ consists of:

- a 0 -cell \mathcal{A}, (object of $\mathcal{C}: X_{0}$)
- a 1-cell $T: \mathcal{A} \rightarrow \mathcal{A}$, (diagram $X_{0} \stackrel{t}{\leftarrow} X_{1} \xrightarrow{s} X_{0}$ in \mathcal{C})

Category internal in \mathcal{C} with pullbacks

[Benaboú, 1967. (p.41)]
Let \mathcal{C} be a category with pullbacks.
A category internal in $\mathcal{C}:=$ a 2 -monad in the bicategory $\operatorname{Span}(\mathcal{C})$.
A 2-monad in $\operatorname{Span}(\mathcal{C})$ consists of:

- a 0 -cell \mathcal{A}, (object of $\mathcal{C}: X_{0}$)
- a 1-cell $T: \mathcal{A} \rightarrow \mathcal{A}$, (diagram $X_{0} \stackrel{t}{\leftarrow} X_{1} \xrightarrow{s} X_{0}$ in \mathcal{C})
- 2-cells $\mu: T T \Rightarrow T$ and $\eta: \operatorname{ld}_{\mathcal{A}} \Rightarrow T$ (commutative diagrams in \mathcal{C}) for 2-cell μ : for 2-cell η :

$$
\begin{aligned}
& X_{0} \stackrel{t p_{1}}{ } X_{1} \times X_{0} X_{1} \xrightarrow{s p_{2}} X_{0}
\end{aligned}
$$

Horizontal composition of 1-cells TT

Horizontal composition of 1-cells TT

s.t. c: $X_{1} \times x_{0} X_{1} \rightarrow X_{1}$ is associative and unital with respect to $u: X_{0} \rightarrow X_{1}$

Internal categories: summing up

A category internal in a category \mathcal{C} with pullbacks consists of:

Internal categories: summing up

A category internal in a category \mathcal{C} with pullbacks consists of:

- object X_{0} (called object of objects)

Internal categories: summing up

A category internal in a category \mathcal{C} with pullbacks consists of:

- object X_{0} (called object of objects)
- object X_{1} (called object of morphisms) with morphisms $s, t: X_{1} \rightarrow X_{0}$

Internal categories: summing up

A category internal in a category \mathcal{C} with pullbacks consists of:

- object X_{0} (called object of objects)
- object X_{1} (called object of morphisms)
with morphisms $s, t: X_{1} \rightarrow X_{0}$
- morphisms $c: X_{1} \times X_{0} X_{1} \rightarrow X_{1}$ and $u: X_{0} \rightarrow X_{1}$ which are associative and unital

Internal categories: summing up

A category internal in a category \mathcal{C} with pullbacks consists of:

- object X_{0} (called object of objects)
- object X_{1} (called object of morphisms)
with morphisms $s, t: X_{1} \rightarrow X_{0}$
- morphisms $c: X_{1} \times X_{0} X_{1} \rightarrow X_{1}$ and $u: X_{0} \rightarrow X_{1}$ which are associative and unital and which satisfy: $t c=t p_{1}, s c=s p_{2}, t u=i d_{X_{0}}=s u$.

Examples of internal categories

- A category internal in Set $=$ a small category \mathcal{C}

Examples of internal categories

- A category internal in Set $=$ a small category \mathcal{C}

There are sets $S_{0}=O b(C)$ (set of objects) and
$S_{1}=\amalg_{A, B \in O b(\mathcal{C})} \operatorname{Hom}(A, B)$ (set of morphisms)

Examples of internal categories

- A category internal in Set $=$ a small category \mathcal{C}

There are sets $S_{0}=O b(\mathcal{C})$ (set of objects) and
$S_{1}=\amalg_{A, B \in O b(\mathcal{C})} \operatorname{Hom}(A, B)$ (set of morphisms) and maps
$s, t: \amalg_{A, B \in O b(\mathcal{C})} \operatorname{Hom}(A, B) \rightarrow O b(\mathcal{C})$,
$u: O b(\mathcal{C}) \rightarrow \amalg_{A, B \in O b(\mathcal{C})} \operatorname{Hom}(A, B)$,
$c: \amalg_{A, B \in O b(\mathcal{C})} \operatorname{Hom}(A, B) \times{ }_{O b(\mathcal{C})} \amalg_{A, B \in O b(\mathcal{C})} \operatorname{Hom}(A, B)$
$\rightarrow \amalg_{A, B \in O b(\mathcal{C})} \operatorname{Hom}(A, B)$,

Examples of internal categories

- A category internal in Set $=$ a small category \mathcal{C}

There are sets $S_{0}=O b(\mathcal{C})$ (set of objects) and
$S_{1}=\amalg_{A, B \in O b(\mathcal{C})} \operatorname{Hom}(A, B)$ (set of morphisms) and maps
$s, t: \amalg_{A, B \in O b(\mathcal{C})} \operatorname{Hom}(A, B) \rightarrow O b(\mathcal{C})$,
$u: O b(\mathcal{C}) \rightarrow \amalg_{A, B \in O b(\mathcal{C})} \operatorname{Hom}(A, B)$,
$c: \amalg_{A, B \in O b(\mathcal{C})} \operatorname{Hom}(A, B) \times{ }_{O b(\mathcal{C})} \amalg_{A, B \in O b(\mathcal{C})} \operatorname{Hom}(A, B)$
$\rightarrow \amalg_{A, B \in O b(\mathcal{C})} \operatorname{Hom}(A, B)$,
which come down to maps
$\operatorname{Hom}(A, B) \xrightarrow{s, t} O b(\mathcal{C})$,
$\mathrm{Ob}(\mathcal{C}) \xrightarrow{u} \operatorname{Hom}(A, B)$,
$\operatorname{Hom}(B, C) \times \operatorname{Hom}(A, B) \xrightarrow{c} \operatorname{Hom}(A, C)$.

Examples of internal categories

- A category internal in Set $=$ a small category \mathcal{C}

There are sets $S_{0}=O b(\mathcal{C})$ (set of objects) and
$S_{1}=\amalg_{A, B \in O b(\mathcal{C})} \operatorname{Hom}(A, B)$ (set of morphisms) and maps
$s, t: \amalg_{A, B \in O b(\mathcal{C})} \operatorname{Hom}(A, B) \rightarrow O b(\mathcal{C})$,
$u: O b(\mathcal{C}) \rightarrow \amalg_{A, B \in O b(\mathcal{C})} \operatorname{Hom}(A, B)$,
$c: \amalg_{A, B \in O b(\mathcal{C})} \operatorname{Hom}(A, B) \times{ }_{O b(\mathcal{C})} \amalg_{A, B \in O b(\mathcal{C})} \operatorname{Hom}(A, B)$
$\rightarrow \amalg_{A, B \in O b(\mathcal{C})} \operatorname{Hom}(A, B)$,
which come down to maps
$\operatorname{Hom}(A, B) \xrightarrow{s, t} \mathrm{Ob}(\mathcal{C})$,
$\mathrm{Ob}(\mathcal{C}) \xrightarrow{u} \operatorname{Hom}(A, B)$,
$\operatorname{Hom}(B, C) \times \operatorname{Hom}(A, B) \xrightarrow{c} \operatorname{Hom}(A, C)$.

- A category internal in Cat ${ }_{1}$: a double category (we saw this)

Examples of internal categories

- A category internal in Set $=$ a small category \mathcal{C}

There are sets $S_{0}=O b(\mathcal{C})$ (set of objects) and
$S_{1}=\amalg_{A, B \in O b(\mathcal{C})} \operatorname{Hom}(A, B)$ (set of morphisms) and maps
$s, t: \amalg_{A, B \in O b(\mathcal{C})} \operatorname{Hom}(A, B) \rightarrow O b(\mathcal{C})$,
$u: O b(\mathcal{C}) \rightarrow \amalg_{A, B \in O b(\mathcal{C})} \operatorname{Hom}(A, B)$,
$c: \amalg_{A, B \in O b(\mathcal{C})} \operatorname{Hom}(A, B) \times{ }_{O b(\mathcal{C})} \amalg_{A, B \in O b(\mathcal{C})} \operatorname{Hom}(A, B)$
$\rightarrow \amalg_{A, B \in O b(\mathcal{C})} \operatorname{Hom}(A, B)$,
which come down to maps
$\operatorname{Hom}(A, B) \xrightarrow{s, t} O b(\mathcal{C})$,
$\mathrm{Ob}(\mathcal{C}) \xrightarrow{u} \operatorname{Hom}(A, B)$,
$\operatorname{Hom}(B, C) \times \operatorname{Hom}(A, B) \xrightarrow{c} \operatorname{Hom}(A, C)$.

- A category internal in Cat C_{1} : a double category (we saw this)
- A category internal in Top: a topological category.

Enriched categories

Enriched categories

A category \mathcal{T} is enriched over a monoidal cat. $(\mathcal{C}, \otimes, I, \alpha, \lambda, \rho)$ if:

Enriched categories

A category \mathcal{T} is enriched over a monoidal cat. $(\mathcal{C}, \otimes, I, \alpha, \lambda, \rho)$ if:

- $O b(\mathcal{T})$ is a set

Enriched categories

A category \mathcal{T} is enriched over a monoidal cat. $(\mathcal{C}, \otimes, I, \alpha, \lambda, \rho)$ if:

- $O b(\mathcal{T})$ is a set
- for all $A, B \in O b(\mathcal{T})$ the set $\operatorname{Hom}_{\mathcal{T}}(A, B) \in \mathcal{C}$ (is an object in \mathcal{C}),

Enriched categories

A category \mathcal{T} is enriched over a monoidal cat. $(\mathcal{C}, \otimes, I, \alpha, \lambda, \rho)$ if:

- $O b(\mathcal{T})$ is a set
- for all $A, B \in \operatorname{Ob}(\mathcal{T})$ the set $\operatorname{Hom}_{\mathcal{T}}(A, B) \in \mathcal{C}$ (is an object in \mathcal{C}),
- the map $\operatorname{Hom}_{\mathcal{T}}(B, C) \times \operatorname{Hom}_{\mathcal{T}}(A, B) \xrightarrow{c} \operatorname{Hom}_{\mathcal{T}}(A, C)$ is a morphism in \mathcal{C},

Enriched categories

A category \mathcal{T} is enriched over a monoidal cat. $(\mathcal{C}, \otimes, I, \alpha, \lambda, \rho)$ if:

- $O b(\mathcal{T})$ is a set
- for all $A, B \in \operatorname{Ob}(\mathcal{T})$ the set $\operatorname{Hom}_{\mathcal{T}}(A, B) \in \mathcal{C}$ (is an object in \mathcal{C}),
- the map $\operatorname{Hom}_{\mathcal{T}}(B, C) \times \operatorname{Hom}_{\mathcal{T}}(A, B) \xrightarrow{C} \operatorname{Hom}_{\mathcal{T}}(A, C)$ is a morphism in \mathcal{C},
- and there is a morphism $j_{A}: I \rightarrow \operatorname{Hom}_{\mathcal{T}}(A, A)$ in \mathcal{C}

Enriched categories

A category \mathcal{T} is enriched over a monoidal cat. ($\mathcal{C}, \otimes, I, \alpha, \lambda, \rho$) if:

- $O b(\mathcal{T})$ is a set
- for all $A, B \in \operatorname{Ob}(\mathcal{T})$ the set $\operatorname{Hom}_{\mathcal{T}}(A, B) \in \mathcal{C}$ (is an object in \mathcal{C}),
- the map $\operatorname{Hom}_{\mathcal{T}}(B, C) \times \operatorname{Hom}_{\mathcal{T}}(A, B) \xrightarrow{c} \operatorname{Hom}_{\mathcal{T}}(A, C)$ is a morphism in \mathcal{C},
- and there is a morphism $j_{A}: I \rightarrow \operatorname{Hom}_{\mathcal{T}}(A, A)$ in \mathcal{C} s.t. c is associative (involves α) and unital (involves λ, ρ).

Enriched categories

A category \mathcal{T} is enriched over a monoidal cat. $(\mathcal{C}, \otimes, I, \alpha, \lambda, \rho)$ if:

- $O b(\mathcal{T})$ is a set
- for all $A, B \in O b(\mathcal{T})$ the set $\operatorname{Hom}_{\mathcal{T}}(A, B) \in \mathcal{C}$ (is an object in \mathcal{C}),
- the map $\operatorname{Hom}_{\mathcal{T}}(B, C) \times \operatorname{Hom}_{\mathcal{T}}(A, B) \xrightarrow{c} \operatorname{Hom}_{\mathcal{T}}(A, C)$ is a morphism in \mathcal{C},
- and there is a morphism $j_{A}: I \rightarrow \operatorname{Hom}_{\mathcal{T}}(A, A)$ in \mathcal{C} s.t. c is associative (involves α) and unital (involves λ, ρ).

Examples:

- The categories $\mathrm{Ab},{ }_{R} \mathcal{M}$, Vect $_{k}$ are enriched over themselves.

Enriched categories

A category \mathcal{T} is enriched over a monoidal cat. ($\mathcal{C}, \otimes, I, \alpha, \lambda, \rho)$ if:

- $O b(\mathcal{T})$ is a set
- for all $A, B \in O b(\mathcal{T})$ the set $\operatorname{Hom}_{\mathcal{T}}(A, B) \in \mathcal{C}$ (is an object in \mathcal{C}),
- the map $\operatorname{Hom}_{\mathcal{T}}(B, C) \times \operatorname{Hom}_{\mathcal{T}}(A, B) \xrightarrow{c} \operatorname{Hom}_{\mathcal{T}}(A, C)$ is a morphism in \mathcal{C},
- and there is a morphism $j_{A}: I \rightarrow \operatorname{Hom}_{\mathcal{T}}(A, A)$ in \mathcal{C} s.t. c is associative (involves α) and unital (involves λ, ρ).

Examples:

- The categories $\mathrm{Ab},{ }_{R} \mathcal{M}$, Vect $_{k}$ are enriched over themselves.
- A category enriched over Set = a small category

Enriched categories

A category \mathcal{T} is enriched over a monoidal cat. $(\mathcal{C}, \otimes, I, \alpha, \lambda, \rho)$ if:

- $O b(\mathcal{T})$ is a set
- for all $A, B \in O b(\mathcal{T})$ the set $\operatorname{Hom}_{\mathcal{T}}(A, B) \in \mathcal{C}$ (is an object in \mathcal{C}),
- the map $\operatorname{Hom}_{\mathcal{T}}(B, C) \times \operatorname{Hom}_{\mathcal{T}}(A, B) \xrightarrow{c} \operatorname{Hom}_{\mathcal{T}}(A, C)$ is a morphism in \mathcal{C},
- and there is a morphism $j_{A}: I \rightarrow \operatorname{Hom}_{\mathcal{T}}(A, A)$ in \mathcal{C} s.t. c is associative (involves α) and unital (involves λ, ρ).

Examples:

- The categories $\mathrm{Ab},{ }_{R} \mathcal{M}$, Vect $_{k}$ are enriched over themselves.
- A category enriched over Set = a small category
- A category enriched over Cat $_{1}=$ a 2 -category

Enriched categories

A category \mathcal{T} is enriched over a monoidal cat. $(\mathcal{C}, \otimes, I, \alpha, \lambda, \rho)$ if:

- $O b(\mathcal{T})$ is a set
- for all $A, B \in O b(\mathcal{T})$ the set $\operatorname{Hom}_{\mathcal{T}}(A, B) \in \mathcal{C}$ (is an object in \mathcal{C}),
- the map $\operatorname{Hom}_{\mathcal{T}}(B, C) \times \operatorname{Hom}_{\mathcal{T}}(A, B) \xrightarrow{c} \operatorname{Hom}_{\mathcal{T}}(A, C)$ is a morphism in \mathcal{C},
- and there is a morphism $j_{A}: I \rightarrow \operatorname{Hom}_{\mathcal{T}}(A, A)$ in \mathcal{C} s.t. c is associative (involves α) and unital (involves λ, ρ).

Examples:

- The categories $\mathrm{Ab},{ }_{R} \mathcal{M}$, Vect $_{k}$ are enriched over themselves.
- A category enriched over Set = a small category
- A category enriched over Cat $_{1}=$ a 2-category
- A cat. enriched over Cat ${ }_{2}=$ bicategory

Enriched categories

A category \mathcal{T} is enriched over a monoidal cat. $(\mathcal{C}, \otimes, I, \alpha, \lambda, \rho)$ if:

- $O b(\mathcal{T})$ is a set
- for all $A, B \in O b(\mathcal{T})$ the set $\operatorname{Hom}_{\mathcal{T}}(A, B) \in \mathcal{C}$ (is an object in \mathcal{C}),
- the map $\operatorname{Hom}_{\mathcal{T}}(B, C) \times \operatorname{Hom}_{\mathcal{T}}(A, B) \xrightarrow{C} \operatorname{Hom}_{\mathcal{T}}(A, C)$ is a morphism in \mathcal{C},
- and there is a morphism $j_{A}: I \rightarrow \operatorname{Hom}_{\mathcal{T}}(A, A)$ in \mathcal{C} s.t. c is associative (involves α) and unital (involves λ, ρ).

Examples:

- The categories $\mathrm{Ab},{ }_{R} \mathcal{M}$, Vect $_{k}$ are enriched over themselves.
- A category enriched over Set = a small category
- A category enriched over Cat ${ }_{1}=$ a 2-category
- A cat. enriched over Cat $2_{2}=$ bicategory
- A cat. enriched over $\mathrm{PsDbl}_{2}=$ locally cubical bicategory [Garner-Gurski].

Enriched functors

A functor $F: \mathcal{T} \rightarrow \mathcal{T}^{\prime}$, with (\mathcal{T}, c, j) and $\left(\mathcal{T}^{\prime}, c^{\prime}, j^{\prime}\right)$,

Enriched functors

A functor $F: \mathcal{T} \rightarrow \mathcal{T}^{\prime}$, with (\mathcal{T}, c, j) and $\left(\mathcal{T}^{\prime}, c^{\prime}, j^{\prime}\right)$, is \mathcal{C}-enriched, if:

- the maps $F_{A, B}: \mathcal{T}(A, B) \rightarrow \mathcal{T}^{\prime}(F(A), F(B))$ are morphisms in \mathcal{C},

Enriched functors

A functor $F: \mathcal{T} \rightarrow \mathcal{T}^{\prime}$, with (\mathcal{T}, c, j) and ($\mathcal{T}^{\prime}, c^{\prime}, j^{\prime}$), is \mathcal{C}-enriched, if:

- the maps $F_{A, B}: \mathcal{T}(A, B) \rightarrow \mathcal{T}^{\prime}(F(A), F(B))$ are morphisms in \mathcal{C}, s.t.
- $c^{\prime}(F \times F)=F c$

Enriched functors

A functor $F: \mathcal{T} \rightarrow \mathcal{T}^{\prime}$, with (\mathcal{T}, c, j) and ($\left.\mathcal{T}^{\prime}, c^{\prime}, j^{\prime}\right)$, is \mathcal{C}-enriched, if:

- the maps $F_{A, B}: \mathcal{T}(A, B) \rightarrow \mathcal{T}^{\prime}(F(A), F(B))$ are morphisms in \mathcal{C}, s.t.
- $c^{\prime}(F \times F)=F c$ and
- $F j=j^{\prime}$
as morphisms in \mathcal{C}.

Enriched functors

A functor $F: \mathcal{T} \rightarrow \mathcal{T}^{\prime}$, with (\mathcal{T}, c, j) and ($\left.\mathcal{T}^{\prime}, c^{\prime}, j^{\prime}\right)$, is \mathcal{C}-enriched, if:

- the maps $F_{A, B}: \mathcal{T}(A, B) \rightarrow \mathcal{T}^{\prime}(F(A), F(B))$ are morphisms in \mathcal{C}, s.t.
- $c^{\prime}(F \times F)=F c$ and
- $F j=j^{\prime}$
as morphisms in \mathcal{C}.

From enriched to internal categories

From enriched to internal categories

We already saw that a 2-category (bicategory) embeds into a double category (pseudodouble category).

From enriched to internal categories

We already saw that a 2-category (bicategory) embeds into a double category (pseudodouble category).
That is:

- a category enriched over $\mathrm{Cat}_{1} \hookrightarrow$ a category internal in Cat ${ }_{1}$

From enriched to internal categories

We already saw that a 2-category (bicategory) embeds into a double category (pseudodouble category).
That is:

- a category enriched over $\mathrm{Cat}_{1} \hookrightarrow$ a category internal in Cat ${ }_{1}$
- a category enriched over $\mathrm{Cat}_{2} \hookrightarrow$ a category internal in Cat ${ }_{2}$

From enriched to internal categories

We already saw that a 2-category (bicategory) embeds into a double category (pseudodouble category).
That is:

- a category enriched over $\mathrm{Cat}_{1} \hookrightarrow$ a category internal in Cat ${ }_{1}$
- a category enriched over $\mathrm{Cat}_{2} \hookrightarrow$ a category internal in Cat ${ }_{2}$
- A cat. enriched over PsDbl_{2} (locally cubical bicategory) [Grandis-Paré: "A framework..."]: it is an intercategory (=internal in $L x D b /$).

From enriched to internal categories

We already saw that a 2-category (bicategory) embeds into a double category (pseudodouble category).

That is:

- a category enriched over $\mathrm{Cat}_{1} \hookrightarrow$ a category internal in Cat ${ }_{1}$
- a category enriched over $\mathrm{Cat}_{2} \hookrightarrow$ a category internal in Cat ${ }_{2}$
- A cat. enriched over PsDbl_{2} (locally cubical bicategory) [Grandis-Paré: "A framework..."]: it is an intercategory (=internal in $L x D b /$). In particular, it is a category internal in PsDb_{2}.

When enriched cats are internal cats

[Ehresmann \& Ehresmann (1978)]

Proposition.

Assume:

- \mathcal{C} a category with finite products, a terminal object \mathcal{I} and small coproducts.
- \mathcal{T} is a category enriched over \mathcal{C}, set $T_{0}=\amalg_{A \in \mathcal{O b} \mathcal{T}} \mathcal{I}_{A}$ and $T_{1}=\amalg_{A, B \in \mathcal{O} b \mathcal{T}} \mathcal{T}(A, B), \mathcal{C}$ has iterated pullbacks $T_{1}^{(n)_{0}}$;
- coproducts preserve pullbacks;
- the functors $X \times-$ and $-\times X$, for $X \in \mathcal{O} b \mathcal{T}$, preserve coproducts.

Then \mathcal{T} is a category internal in \mathcal{C}.

When enriched cats are internal cats

[Ehresmann \& Ehresmann (1978)]

Proposition.

Assume:

- \mathcal{C} a category with finite products, a terminal object \mathcal{I} and small coproducts.
$\nabla \mathcal{T}$ is a category enriched over \mathcal{C}, set $T_{0}=\amalg_{A \in \mathcal{O b} \mathcal{T}} \mathcal{I}_{A}$ and $T_{1}=\amalg_{A, B \in \mathcal{O} b \mathcal{T}} \mathcal{T}(A, B), \mathcal{C}$ has iterated pullbacks $T_{1}^{(n)_{0}}$;
- coproducts preserve pullbacks;
- the functors $X \times-$ and $-\times X$, for $X \in \mathcal{O} b \mathcal{T}$, preserve coproducts.

Then \mathcal{T} is a category internal in \mathcal{C}.

- There is a functor $\Gamma: \mathcal{C}$ - Cat $\rightarrow \operatorname{Cat}(\mathcal{C})$

When enriched cats are internal cats

[Ehresmann \& Ehresmann (1978)]

Proposition.

Assume:

- \mathcal{C} a category with finite products, a terminal object \mathcal{I} and small coproducts.
- \mathcal{T} is a category enriched over \mathcal{C}, set $T_{0}=\amalg_{A \in \mathcal{O b} \mathcal{T}} \mathcal{I}_{A}$ and $T_{1}=\amalg_{A, B \in \mathcal{O} b \mathcal{T}} \mathcal{T}(A, B), \mathcal{C}$ has iterated pullbacks $T_{1}^{(n)_{0}}$;
- coproducts preserve pullbacks;
- the functors $X \times-$ and $-\times X$, for $X \in \mathcal{O} b \mathcal{T}$, preserve coproducts.

Then \mathcal{T} is a category internal in \mathcal{C}.

- There is a functor $\Gamma: \mathcal{C}$ - Cat $\rightarrow \operatorname{Cat}(\mathcal{C})$ which corestricts to an equivalence $\Gamma^{\prime}: \mathcal{C}$ - $\mathrm{Cat} \rightarrow \mathrm{Cat}_{d}(\mathcal{C})$.

The bicategory of matrices \mathcal{C} - Mat

(\mathcal{C} a category with products and coproducts)

The bicategory \mathcal{C} - Mat of matrices

Let \mathcal{C} be a category with products and coproducts.

The bicategory \mathcal{C} - Mat of matrices

Let \mathcal{C} be a category with products and coproducts.
The bicategory \mathcal{C} - Mat consists of:
$\underline{0 \text {-cells: small sets } I, J, \ldots}$

The bicategory \mathcal{C} - Mat of matrices

Let \mathcal{C} be a category with products and coproducts.
The bicategory \mathcal{C} - Mat consists of:
0-cells: small sets I, J, \ldots
1-cells: matrices $(M(i, j))_{i \in I, j \in J}$ whose entries are objects of \mathcal{C}

The bicategory \mathcal{C} - Mat of matrices

Let \mathcal{C} be a category with products and coproducts.
The bicategory \mathcal{C} - Mat consists of:
0 -cells: small sets I, J, \ldots
1-cells: matrices $(M(i, j))_{i \in I, j \in J}$ whose entries are objects of \mathcal{C} 2-cells: families of morphisms $f_{i, j}: M(i, j) \rightarrow N(i, j)$ in \mathcal{C} for every $i \in I, j \in J$.

The bicategory \mathcal{C} - Mat of matrices

Let \mathcal{C} be a category with products and coproducts.
The bicategory \mathcal{C} - Mat consists of:
0 -cells: small sets I, J, \ldots
1-cells: matrices $(M(i, j))_{i \in I, j \in J}$ whose entries are objects of \mathcal{C} 2-cells: families of morphisms $f_{i, j}: M(i, j) \rightarrow N(i, j)$ in \mathcal{C} for every $i \in I, j \in J$.

Identity 1 -cell: the unit matrix \mathbb{I} (1 is the terminal object and 0 the initial object of \mathcal{C})

The bicategory \mathcal{C} - Mat of matrices

Let \mathcal{C} be a category with products and coproducts.
The bicategory \mathcal{C} - Mat consists of:
0-cells: small sets I, J, \ldots
1-cells: matrices $(M(i, j))_{i \in I, j \in J}$ whose entries are objects of \mathcal{C} 2-cells: families of morphisms $f_{i, j}: M(i, j) \rightarrow N(i, j)$ in \mathcal{C} for every $i \in I, j \in J$.

Identity 1 -cell: the unit matrix \mathbb{I} (1 is the terminal object and 0 the initial object of \mathcal{C})
Identity 2-cell: identity morphism on $(M(i, j))_{i \in I, j \in J}$

Horizontal composition of 1- and 2-cells

Given matrices $(M(i, j))_{i \in I, j \in J}$ and $(N(j, k))_{j \in J, k \in K}$

Horizontal composition of 1- and 2-cells

Given matrices $(M(i, j))_{i \in I, j \in J}$ and $(N(j, k))_{j \in J, k \in K}$ their composition is given by the matrix

$$
\left(\amalg_{j \in J} N(j, k) \times M(i, j)\right)_{i \in I, k \in K} .
$$

Horizontal composition of 1- and 2-cells

Given matrices $(M(i, j))_{i \in I, j \in J}$ and $(N(j, k))_{j \in J, k \in K}$ their composition is given by the matrix

$$
\left(\amalg_{j \in J} N(j, k) \times M(i, j)\right)_{i \in I, k \in K} .
$$

Given 2-cells:
$\left(f_{i, j}: M(i, j) \rightarrow M^{\prime}(i, j)\right)_{i \in I, j \in J}$ and $\left(g_{j, k}: N(j, k) \rightarrow N^{\prime}(j, k)\right)_{j \in J, k \in K}$

Horizontal composition of 1- and 2-cells

Given matrices $(M(i, j))_{i \in I, j \in J}$ and $(N(j, k))_{j \in J, k \in K}$ their composition is given by the matrix

$$
\left(\amalg_{j \in J} N(j, k) \times M(i, j)\right)_{i \in I, k \in K} .
$$

Given 2-cells:
$\left(f_{i, j}: M(i, j) \rightarrow M^{\prime}(i, j)\right)_{i \in I, j \in J}$ and $\left(g_{j, k}: N(j, k) \rightarrow N^{\prime}(j, k)\right)_{j \in J, k \in K}$ their horizontal composition is given by the family of morphisms $\left(h_{i, k}\right)_{i \in I, k \in K}$ defined by:

$$
\begin{array}{r}
N(j, k) \times M(i, j) \xrightarrow{\iota_{j}} \amalg_{j \in J} N(j, k) \times M(i, j) \\
g_{j, k} \times f_{i, j} \\
N^{\prime}(j, k) \times M^{\prime}(i, j) \xrightarrow{\iota_{j}}
\end{array}
$$

Horizontal composition of 1- and 2-cells

Given matrices $(M(i, j))_{i \in I, j \in J}$ and $(N(j, k))_{j \in J, k \in K}$ their composition is given by the matrix

$$
\left(\amalg_{j \in J} N(j, k) \times M(i, j)\right)_{i \in I, k \in K} .
$$

Given 2-cells:
$\left(f_{i, j}: M(i, j) \rightarrow M^{\prime}(i, j)\right)_{i \in I, j \in J}$ and $\left(g_{j, k}: N(j, k) \rightarrow N^{\prime}(j, k)\right)_{j \in J, k \in K}$ their horizontal composition is given by the family of morphisms $\left(h_{i, k}\right)_{i \in l, k \in K}$ defined by:

$$
\begin{aligned}
& N(j, k) \times M(i, j) \xrightarrow{\iota_{j}} \amalg_{j \in J} N(j, k) \times M(i, j) \\
& g_{j, k} \times f_{i, j} \\
& N^{\prime}(j, k) \times M^{\prime}(i, j) \xrightarrow{\iota_{j}}{ }^{h_{i, k}}
\end{aligned} \amalg_{j \in J} N^{\prime}(j, k) \times M^{\prime}(i, j)
$$

$\underline{\text { Vertical composition of 2-cells: }} \quad M(i, j) \xrightarrow{f_{i, j}} N(i, j) \xrightarrow{g_{i, j}} L(i, j)$

Enriched categories as

2-monads in \mathcal{C} - Mat

2-monads in the bicategory \mathcal{C} - Mat...

...are categories enriched over \mathcal{C}.

2-monads in the bicategory \mathcal{C} - Mat...

...are categories enriched over \mathcal{C}.
[Cottrell, Fujii, Power (2017)]
Let \mathcal{C} be a category with products and coproducts.

2-monads in the bicategory \mathcal{C} - Mat...

...are categories enriched over \mathcal{C}.
[Cottrell, Fujii, Power (2017)]
Let \mathcal{C} be a category with products and coproducts.
A 2-monad in the bicategory \mathcal{C} - Mat consists of:

- a 0 -cell \mathcal{A}, (a small set I)

2-monads in the bicategory \mathcal{C} - Mat...

...are categories enriched over \mathcal{C}.
[Cottrell, Fujii, Power (2017)]
Let \mathcal{C} be a category with products and coproducts.
A 2-monad in the bicategory \mathcal{C} - Mat consists of:

- a 0 -cell \mathcal{A}, (a small set l)
- a 1-cell $T: \mathcal{A} \rightarrow \mathcal{A}$, (a square matrix $\left.(M(i, j))_{i, j \in I}\right)$

2-monads in the bicategory C - Mat..

...are categories enriched over \mathcal{C}.
[Cottrell, Fujii, Power (2017)]
Let \mathcal{C} be a category with products and coproducts.
A 2-monad in the bicategory \mathcal{C} - Mat consists of:

- a 0 -cell \mathcal{A}, (a small set $/$)
- a 1-cell $T: \mathcal{A} \rightarrow \mathcal{A}$, (a square matrix $\left.(M(i, j))_{i, j \in I}\right)$
- 2-cells $\mu: T T \Rightarrow T$ and $\eta: \operatorname{ld}_{\mathcal{A}} \Rightarrow T$ (families of morphisms in \mathcal{C})

2-monads in the bicategory \mathcal{C} - Mat.

...are categories enriched over \mathcal{C}.
[Cottrell, Fujii, Power (2017)]
Let \mathcal{C} be a category with products and coproducts.
A 2-monad in the bicategory \mathcal{C} - Mat consists of:

- a 0 -cell \mathcal{A}, (a small set I)
- a 1-cell $T: \mathcal{A} \rightarrow \mathcal{A}$, (a square matrix $\left.(M(i, j))_{i, j \in I}\right)$
- 2-cells $\mu: T T \Rightarrow T$ and $\eta: \operatorname{ld}_{\mathcal{A}} \Rightarrow T$ (families of morphisms in \mathcal{C}) $\mu_{i, k}^{M}: \amalg_{j \in I} M(j, k) \times M(i, j) \rightarrow M(i, k)$ and $\eta_{i, k}^{M}: \mathbb{I}_{i, k} \rightarrow M(i, k)$, for every $i, k \in I$,

2-monads in the bicategory \mathcal{C} - Mat.

...are categories enriched over \mathcal{C}.
[Cottrell, Fujii, Power (2017)]
Let \mathcal{C} be a category with products and coproducts.
A 2-monad in the bicategory \mathcal{C} - Mat consists of:

- a 0 -cell \mathcal{A}, (a small set I)
- a 1-cell $T: \mathcal{A} \rightarrow \mathcal{A}$, (a square matrix $\left.(M(i, j))_{i, j \in I}\right)$
- 2-cells $\mu: T T \Rightarrow T$ and $\eta: \operatorname{ld}_{\mathcal{A}} \Rightarrow T$ (families of morphisms in \mathcal{C})
$\mu_{i, k}^{M}: \amalg_{j \in I} M(j, k) \times M(i, j) \rightarrow M(i, k)$ and $\eta_{i, k}^{M}: \mathbb{I}_{i, k} \rightarrow M(i, k)$, for every $i, k \in I$,
satisfying associativity and unity laws.

2-monads in the bicategory \mathcal{C} - Mat.

...are categories enriched over \mathcal{C}.
[Cottrell, Fujii, Power (2017)]
Let \mathcal{C} be a category with products and coproducts.
A 2-monad in the bicategory \mathcal{C} - Mat consists of:

- a 0 -cell \mathcal{A}, (a small set I)
- a 1-cell $T: \mathcal{A} \rightarrow \mathcal{A}$, (a square matrix $\left.(M(i, j))_{i, j \in I}\right)$
- 2-cells $\mu: T T \Rightarrow T$ and $\eta: \operatorname{ld}_{\mathcal{A}} \Rightarrow T$ (families of morphisms in \mathcal{C})
$\mu_{i, k}^{M}: \amalg_{j \in I} M(j, k) \times M(i, j) \rightarrow M(i, k)$ and $\eta_{i, k}^{M}: \mathbb{I}_{i, k} \rightarrow M(i, k)$, for every $i, k \in I$,
satisfying associativity and unity laws.
Setting $O b(\mathcal{T}):=I$ (a small set),

2-monads in the bicategory \mathcal{C} - Mat.

...are categories enriched over \mathcal{C}.
[Cottrell, Fujii, Power (2017)]
Let \mathcal{C} be a category with products and coproducts.
A 2-monad in the bicategory \mathcal{C} - Mat consists of:

- a 0 -cell \mathcal{A}, (a small set I)
- a 1-cell $T: \mathcal{A} \rightarrow \mathcal{A}$, (a square matrix $\left.(M(i, j))_{i, j \in I}\right)$
- 2-cells $\mu: T T \Rightarrow T$ and $\eta: \operatorname{ld}_{\mathcal{A}} \Rightarrow T$ (families of morphisms in \mathcal{C})
$\mu_{i, k}^{M}: \amalg_{j \in I} M(j, k) \times M(i, j) \rightarrow M(i, k)$ and $\eta_{i, k}^{M}: \mathbb{I}_{i, k} \rightarrow M(i, k)$, for every $i, k \in I$,
satisfying associativity and unity laws.
Setting $O b(\mathcal{T}):=I$ (a small set), and $\mathcal{T}(A, B):=M(i, j),(A=i, B=j)$

2-monads in the bicategory \mathcal{C} - Mat.

...are categories enriched over \mathcal{C}.
[Cottrell, Fujii, Power (2017)]
Let \mathcal{C} be a category with products and coproducts.
A 2-monad in the bicategory \mathcal{C} - Mat consists of:

- a 0 -cell \mathcal{A}, (a small set I)
- a 1-cell $T: \mathcal{A} \rightarrow \mathcal{A}$, (a square matrix $\left.(M(i, j))_{i, j \in I}\right)$
- 2-cells $\mu: T T \Rightarrow T$ and $\eta: \operatorname{ld}_{\mathcal{A}} \Rightarrow T$ (families of morphisms in \mathcal{C})
$\mu_{i, k}^{M}: \amalg_{j \in I} M(j, k) \times M(i, j) \rightarrow M(i, k)$ and $\eta_{i, k}^{M}: \mathbb{I}_{i, k} \rightarrow M(i, k)$, for every $i, k \in I$,
satisfying associativity and unity laws.
Setting $O b(\mathcal{T}):=I$ (a small set), and $\mathcal{T}(A, B):=M(i, j),(A=i, B=j)$ (observe that $\mu_{i, k}^{M}$ is induced by some $M(j, k) \times M(i, j) \xrightarrow{\circ} M(i, k)$),

2-monads in the bicategory \mathcal{C} - Mat.

...are categories enriched over \mathcal{C}.
[Cottrell, Fujii, Power (2017)]
Let \mathcal{C} be a category with products and coproducts.
A 2-monad in the bicategory \mathcal{C} - Mat consists of:

- a 0 -cell \mathcal{A}, (a small set I)
- a 1-cell $T: \mathcal{A} \rightarrow \mathcal{A}$, (a square matrix $\left.(M(i, j))_{i, j \in I}\right)$
- 2-cells $\mu: T T \Rightarrow T$ and $\eta: \operatorname{ld}_{\mathcal{A}} \Rightarrow T$ (families of morphisms in \mathcal{C})
$\mu_{i, k}^{M}: \amalg_{j \in I} M(j, k) \times M(i, j) \rightarrow M(i, k)$ and $\eta_{i, k}^{M}: \mathbb{I}_{i, k} \rightarrow M(i, k)$, for every $i, k \in I$,
satisfying associativity and unity laws.
Setting $O b(\mathcal{T}):=I$ (a small set), and $\mathcal{T}(A, B):=M(i, j),(A=i, B=j)$ (observe that $\mu_{i, k}^{M}$ is induced by some $M(j, k) \times M(i, j) \xrightarrow{\circ} M(i, k)$), we conclude: a 2-monad in the bicat. \mathcal{C} - Mat is a cat. enriched $/ \underline{\mathcal{C}}$.

Idea: how to recover Ehresmann's result

- We saw that 2-monads in $\operatorname{Span}(\mathcal{C})$ are categories internal in \mathcal{C}.

Idea: how to recover Ehresmann's result

- We saw that 2-monads in $\operatorname{Span}(\mathcal{C})$ are categories internal in \mathcal{C}.
- Now we know that 2-monads in \mathcal{C} - Mat are cat. enriched $/ \mathcal{C}$.

Idea: how to recover Ehresmann's result

- We saw that 2-monads in $\operatorname{Span}(\mathcal{C})$ are categories internal in \mathcal{C}.
- Now we know that 2-monads in \mathcal{C} - Mat are cat. enriched $/ \mathcal{C}$.

Theorem. [Cottrell, Fujii, Power (2017)] Let V be a cartesian closed category with finite limits and small coproducts. TFAE:

1. V is extensive.
2. The oplax functor Int: \mathcal{C} - $\mathrm{Mat} \rightarrow \operatorname{Span}_{d}(\mathcal{C})$ is a biequivalence.

Idea: how to recover Ehresmann's result

- We saw that 2-monads in $\operatorname{Span}(\mathcal{C})$ are categories internal in \mathcal{C}.
- Now we know that 2-monads in \mathcal{C} - Mat are cat. enriched $/ \mathcal{C}$.

Theorem. [Cottrell, Fujii, Power (2017)] Let V be a cartesian closed category with finite limits and small coproducts. TFAE:

1. V is extensive.
2. The oplax functor $\operatorname{Int}: \mathcal{C}$ - Mat $\rightarrow \operatorname{Span}_{d}(\mathcal{C})$ is a biequivalence.

- Since Int, as a biequivalence, preserves monads \Rightarrow

Idea: how to recover Ehresmann's result

- We saw that 2-monads in $\operatorname{Span}(\mathcal{C})$ are categories internal in \mathcal{C}.
- Now we know that 2-monads in \mathcal{C} - Mat are cat. enriched $/ \mathcal{C}$.

Theorem. [Cottrell, Fujii, Power (2017)] Let V be a cartesian closed category with finite limits and small coproducts. TFAE:

1. V is extensive.
2. The oplax functor Int: \mathcal{C} - Mat $\rightarrow \operatorname{Span}_{d}(\mathcal{C})$ is a biequivalence.

- Since Int, as a biequivalence, preserves monads \Rightarrow
categories enriched over $\mathcal{C} \xrightarrow{\text { Int }}$ cat. internal in \mathcal{C}

Idea: how to recover Ehresmann's result

- We saw that 2-monads in $\operatorname{Span}(\mathcal{C})$ are categories internal in \mathcal{C}.
- Now we know that 2-monads in \mathcal{C} - Mat are cat. enriched $/ \mathcal{C}$.

Theorem. [Cottrell, Fujii, Power (2017)] Let V be a cartesian closed category with finite limits and small coproducts. TFAE:

1. V is extensive.
2. The oplax functor Int: \mathcal{C} - Mat $\rightarrow \operatorname{Span}_{d}(\mathcal{C})$ is a biequivalence.

- Since Int, as a biequivalence, preserves monads \Rightarrow
categories enriched over $\mathcal{C} \xrightarrow{\text { Int }}$ cat. internal in \mathcal{C}
- on morphisms? $\quad\left(\Gamma^{\prime}: \mathcal{C}\right.$ - Cat $\left.\rightarrow \operatorname{Cat}_{d}(\mathcal{C})\right)$

Idea: how to recover Ehresmann's result

- We saw that 2-monads in $\operatorname{Span}(\mathcal{C})$ are categories internal in \mathcal{C}.
- Now we know that 2-monads in \mathcal{C} - Mat are cat. enriched $/ \mathcal{C}$.

Theorem. [Cottrell, Fujii, Power (2017)] Let V be a cartesian closed category with finite limits and small coproducts. TFAE:

1. V is extensive.
2. The oplax functor Int: \mathcal{C} - Mat $\rightarrow \operatorname{Span}_{d}(\mathcal{C})$ is a biequivalence.

- Since Int, as a biequivalence, preserves monads \Rightarrow
categories enriched over $\mathcal{C} \xrightarrow{\text { Int }}$ cat. internal in \mathcal{C}
- on morphisms? $\quad\left(\Gamma^{\prime}: \mathcal{C}\right.$ - Cat $\left.\rightarrow \operatorname{Cat}_{d}(\mathcal{C})\right)$

There is a 2 -category $\operatorname{Mnd}(\mathcal{K})$ of 2 -monads in a 2 -category \mathcal{K}.

Idea: how to recover Ehresmann's result

- We saw that 2-monads in $\operatorname{Span}(\mathcal{C})$ are categories internal in \mathcal{C}.
- Now we know that 2-monads in \mathcal{C} - Mat are cat. enriched $/ \mathcal{C}$.

Theorem. [Cottrell, Fujii, Power (2017)] Let V be a cartesian closed category with finite limits and small coproducts. TFAE:

1. V is extensive.
2. The oplax functor Int: \mathcal{C} - Mat $\rightarrow \operatorname{Span}_{d}(\mathcal{C})$ is a biequivalence.

- Since Int, as a biequivalence, preserves monads \Rightarrow
categories enriched over $\mathcal{C} \xrightarrow{\text { Int }}$ cat. internal in \mathcal{C}
- on morphisms? $\quad\left(\Gamma^{\prime}: \mathcal{C}\right.$ - Cat $\left.\rightarrow \operatorname{Cat}_{d}(\mathcal{C})\right)$

There is a 2 -category $\operatorname{Mnd}(\mathcal{K})$ of 2 -monads in a 2 -category \mathcal{K}.
Its 0 -cells are 2 -monads and 1 -cells are morphisms of monads.

Idea: how to recover Ehresmann's result

- We saw that 2-monads in $\operatorname{Span}(\mathcal{C})$ are categories internal in \mathcal{C}.
- Now we know that 2-monads in \mathcal{C} - Mat are cat. enriched $/ \mathcal{C}$.

Theorem. [Cottrell, Fujii, Power (2017)] Let V be a cartesian closed category with finite limits and small coproducts. TFAE:

1. V is extensive.
2. The oplax functor $\operatorname{Int}: \mathcal{C}$ - Mat $\rightarrow \operatorname{Span}_{d}(\mathcal{C})$ is a biequivalence.

- Since Int, as a biequivalence, preserves monads \Rightarrow
categories enriched over $\mathcal{C} \xrightarrow{\text { Int }}$ cat. internal in \mathcal{C}
- on morphisms? $\quad\left(\Gamma^{\prime}: \mathcal{C}\right.$ - Cat $\left.\rightarrow \operatorname{Cat}_{d}(\mathcal{C})\right)$

There is a 2 -category $\operatorname{Mnd}(\mathcal{K})$ of 2 -monads in a 2 -category \mathcal{K}.
Its 0 -cells are 2 -monads and 1 -cells are morphisms of monads.
If these morphisms of monads show to be internal, resp. enriched functors,

Idea: how to recover Ehresmann's result

- We saw that 2-monads in $\operatorname{Span}(\mathcal{C})$ are categories internal in \mathcal{C}.
- Now we know that 2-monads in \mathcal{C} - Mat are cat. enriched $/ \mathcal{C}$.

Theorem. [Cottrell, Fujii, Power (2017)] Let V be a cartesian closed category with finite limits and small coproducts. TFAE:

1. V is extensive.
2. The oplax functor $\operatorname{Int}: \mathcal{C}$ - Mat $\rightarrow \operatorname{Span}_{d}(\mathcal{C})$ is a biequivalence.

- Since Int, as a biequivalence, preserves monads \Rightarrow
categories enriched over $\mathcal{C} \xrightarrow{\text { Int }}$ cat. internal in \mathcal{C}
- on morphisms? $\quad\left(\Gamma^{\prime}: \mathcal{C}\right.$ - Cat $\left.\rightarrow \operatorname{Cat}_{d}(\mathcal{C})\right)$

There is a 2 -category $\operatorname{Mnd}(\mathcal{K})$ of 2 -monads in a 2 -category \mathcal{K}.
Its 0 -cells are 2 -monads and 1 -cells are morphisms of monads.
If these morphisms of monads show to be internal, resp. enriched functors, the restriction of Int to the 2 -cat. $\operatorname{Mnd}(\bullet)$ would recover Ehresmann's result (under proper conditions).

The 2-category $\operatorname{Mnd}(\mathcal{K})$
 (of 2-monads)

The 2-category $\operatorname{Mnd}(\mathcal{K})$ of monads in \mathcal{K}

0 -cells:

2-monads $\left(\mathcal{A}, T: \mathcal{A} \rightarrow \mathcal{A}, \mu_{T}: T T \rightarrow T, \eta_{T}: \operatorname{ld}_{\mathcal{A}} \rightarrow T\right)$

The 2-category $\operatorname{Mnd}(\mathcal{K})$ of monads in \mathcal{K}

0 -cells:
2-monads $\left(\mathcal{A}, T: \mathcal{A} \rightarrow \mathcal{A}, \mu_{T}: T T \rightarrow T, \eta_{T}: \operatorname{ld}_{\mathcal{A}} \rightarrow T\right)$
1-cells: pairs $(X, \psi):(\mathcal{A}, T) \rightarrow\left(\mathcal{A}^{\prime}, T^{\prime}\right)$ where $X: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ is a 1-cell

The 2-category $\operatorname{Mnd}(\mathcal{K})$ of monads in \mathcal{K}

0 -cells:
2-monads $\left(\mathcal{A}, T: \mathcal{A} \rightarrow \mathcal{A}, \mu_{T}: T T \rightarrow T, \eta_{T}: \operatorname{ld}_{\mathcal{A}} \rightarrow T\right)$
1-cells: pairs $(X, \psi):(\mathcal{A}, T) \rightarrow\left(\mathcal{A}^{\prime}, T^{\prime}\right)$ where $X: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ is a 1-cell and $\psi: T^{\prime} X \Rightarrow X T$ a 2-cell

The 2-category $\operatorname{Mnd}(\mathcal{K})$ of monads in \mathcal{K}

0 -cells:
2-monads $\left(\mathcal{A}, T: \mathcal{A} \rightarrow \mathcal{A}, \mu_{T}: T T \rightarrow T, \eta_{T}: \operatorname{ld}_{\mathcal{A}} \rightarrow T\right)$
1-cells: pairs $(X, \psi):(\mathcal{A}, T) \rightarrow\left(\mathcal{A}^{\prime}, T^{\prime}\right)$ where $X: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ is a 1-cell and $\psi: T^{\prime} X \Rightarrow X T$ a 2-cell s.t.

The 2-category $\operatorname{Mnd}(\mathcal{K})$ of monads in \mathcal{K}

0 -cells:
2-monads $\left(\mathcal{A}, T: \mathcal{A} \rightarrow \mathcal{A}, \mu_{T}: T T \rightarrow T, \eta_{T}: \operatorname{ld}_{\mathcal{A}} \rightarrow T\right)$
1-cells: pairs $(X, \psi):(\mathcal{A}, T) \rightarrow\left(\mathcal{A}^{\prime}, T^{\prime}\right)$ where $X: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ is a 1-cell and $\psi: T^{\prime} X \Rightarrow X T$ a 2-cell s.t.

2-cells: $(X, \psi) \Rightarrow\left(Y, \psi^{\prime}\right)$ are given by 2-cells $\zeta: X \rightarrow Y$ in \mathcal{K} satisfying:

Compositions in $\mathrm{Mnd}(\mathcal{K})$

Compositions in $\mathrm{Mnd}(\mathcal{K})$

Compositions in $\mathrm{Mnd}(\mathcal{K})$

Why 1-cells in $\operatorname{Mnd}(\mathcal{C}$ - Mat)
are not \mathcal{C}-enriched functors

1-cells in Mnd(C-Mat)

A 1-cell in $\operatorname{Mnd}(\mathcal{C}-\mathrm{Mat})$ is given by:

- a pair $(X, \psi):(\mathcal{A}, T) \rightarrow\left(\mathcal{A}^{\prime}, T^{\prime}\right)$ where $X: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ is a 1-cell

1-cells in Mnd(C-Mat)

A 1-cell in $\operatorname{Mnd}(\mathcal{C}-\mathrm{Mat})$ is given by:

- a pair $(X, \psi):(\mathcal{A}, T) \rightarrow\left(\mathcal{A}^{\prime}, T^{\prime}\right)$ where $X: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ is a 1 -cell and $\psi: T^{\prime} X \Rightarrow X T$ a 2 -cell

1-cells in Mnd(C-Mat)

A 1-cell in $\operatorname{Mnd}(\mathcal{C}-\mathrm{Mat})$ is given by:

- a pair $(X, \psi):(\mathcal{A}, T) \rightarrow\left(\mathcal{A}^{\prime}, T^{\prime}\right)$ where $X: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ is a 1 -cell and $\psi: T^{\prime} X \Rightarrow X T$ a 2-cell s.t.

1-cells in Mnd(C-Mat)

A 1-cell in $\operatorname{Mnd}(\mathcal{C}-\mathrm{Mat})$ is given by:

- a pair $(X, \psi):(\mathcal{A}, T) \rightarrow\left(\mathcal{A}^{\prime}, T^{\prime}\right)$ where $X: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ is a 1 -cell and $\psi: T^{\prime} X \Rightarrow X T$ a 2-cell s.t.

For matrices $T:=(M(i, j))_{i, j \in I}$ and $T^{\prime}:=(N(k, l))_{k, l \in K}$

1-cells in Mnd(C-Mat)

A 1-cell in $\operatorname{Mnd}(\mathcal{C}$ - Mat) is given by:

- a pair $(X, \psi):(\mathcal{A}, T) \rightarrow\left(\mathcal{A}^{\prime}, T^{\prime}\right)$ where $X: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ is a 1 -cell and $\psi: T^{\prime} X \Rightarrow X T$ a 2-cell s.t.

For matrices $T:=(M(i, j))_{i, j \in I}$ and $T^{\prime}:=(N(k, l))_{k, l \in K}$ a 1-cell (X, ψ) in $\operatorname{Mnd}(\mathcal{C}$ - Mat $)$ is given by:

1-cells in Mnd(C-Mat)

A 1-cell in $\operatorname{Mnd}(\mathcal{C}$ - Mat) is given by:

- a pair $(X, \psi):(\mathcal{A}, T) \rightarrow\left(\mathcal{A}^{\prime}, T^{\prime}\right)$ where $X: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ is a 1 -cell and $\psi: T^{\prime} X \Rightarrow X T$ a 2 -cell s.t.

For matrices $T:=(M(i, j))_{i, j \in I}$ and $T^{\prime}:=(N(k, l))_{k, l \in K}$ a 1-cell (X, ψ) in $\operatorname{Mnd}(\mathcal{C}$ - Mat $)$ is given by:
a 1-cell $X:=(X(i, k)))_{\substack{c \\ k \in K \\ k \in K}}$

1-cells in Mnd(C-Mat)

A 1-cell in $\operatorname{Mnd}(\mathcal{C}$ - Mat) is given by:

- a pair $(X, \psi):(\mathcal{A}, T) \rightarrow\left(\mathcal{A}^{\prime}, T^{\prime}\right)$ where $X: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ is a 1 -cell and $\psi: T^{\prime} X \Rightarrow X T$ a 2 -cell s.t.

For matrices $T:=(M(i, j))_{i, j \in I}$ and $T^{\prime}:=(N(k, l))_{k, l \in K}$ a 1-cell (X, ψ) in $\operatorname{Mnd}(\mathcal{C}$ - Mat $)$ is given by:
a 1-cell $X:=(X(i, k))$ cicl $\begin{gathered} \\ k \in K \\ \text { and a 2-cell }\end{gathered}$
$f_{i, I}:(N(k, I))_{k, l \in K} \circ(X(i, k))_{\substack{i \in I \\ k \in K}} \Rightarrow(X(i, k))_{\substack{i \in I \\ k \in K}} \circ(M(i, j))_{i, j \in I}$ in \mathcal{C} - Mat,

1-cells in Mnd(C-Mat)

A 1-cell in $\operatorname{Mnd}(\mathcal{C}$ - Mat) is given by:

- a pair $(X, \psi):(\mathcal{A}, T) \rightarrow\left(\mathcal{A}^{\prime}, T^{\prime}\right)$ where $X: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ is a 1-cell and $\psi: T^{\prime} X \Rightarrow X T$ a 2 -cell s.t.

For matrices $T:=(M(i, j))_{i, j \in I}$ and $T^{\prime}:=(N(k, l))_{k, l \in K}$ a 1-cell (X, ψ) in $\operatorname{Mnd}(\mathcal{C}$ - Mat $)$ is given by:
a 1-cell $X:=(X(i, k)){ }_{\substack{i \in I \\ k \in K}}$ and a 2-cell
$f_{i, l}:(N(k, l))_{k, l \in K} \circ(X(i, k))_{\substack{i \in I \\ k \in K}} \Rightarrow(X(i, k))_{\substack{i \in I \\ k \in K}} \circ(M(i, j))_{i, j \in I}$ in \mathcal{C} - Mat, satisfying above laws.

1-cells in $\operatorname{Mnd}(\mathcal{C}$ - Mat) are not \mathcal{C}-enriched functors

Recall: a 2-monad in the bicat. \mathcal{C} - Mat is a cat. enriched $/ \mathcal{C}$ by setting: $O b(\mathcal{T}):=I$ and $\mathcal{T}(A, B):=M(i, j),(A=i, B=j)$

1-cells in $\operatorname{Mnd}(\mathcal{C}$ - Mat) are not \mathcal{C}-enriched functors

Recall: a 2-monad in the bicat. \mathcal{C} - Mat is a cat. enriched / \mathcal{C} by setting:
$O b(\mathcal{T}):=I$ and $\mathcal{T}(A, B):=M(i, j),(A=i, B=j)$
$\left(\mu_{i, k}^{M}\right.$ is induced by some $\left.M(j, k) \times M(i, j) \xrightarrow{\circ} M(i, k)\right)$.

1-cells in Mnd(C-Mat) are not \mathcal{C}-enriched functors

Recall: a 2-monad in the bicat. \mathcal{C} - Mat is a cat. enriched / $\underline{\mathcal{C}}$ by setting:
$O b(\mathcal{T}):=I$ and $\mathcal{T}(A, B):=M(i, j),(A=i, B=j)$
$\left(\mu_{i, k}^{M}\right.$ is induced by some $\left.M(j, k) \times M(i, j) \xrightarrow{\circ} M(i, k)\right)$.
Recall: enriched functors
A functor $F: \mathcal{T} \rightarrow \mathcal{T}^{\prime}$, with (\mathcal{T}, c, j) and $\left(\mathcal{T}^{\prime}, c^{\prime}, j^{\prime}\right)$, is \mathcal{C}-enriched if the maps $F_{A, B}: \mathcal{T}(A, B) \rightarrow \mathcal{T}^{\prime}(F(A), F(B))$ are morphisms in \mathcal{C}, s.t.

1-cells in $\operatorname{Mnd}(\mathcal{C}$ - Mat) are not \mathcal{C}-enriched functors

Recall: a 2-monad in the bicat. \mathcal{C} - Mat is a cat. enriched $/ \underline{\mathcal{C}}$ by setting:
$O b(\mathcal{T}):=I$ and $\mathcal{T}(A, B):=M(i, j),(A=i, B=j)$
$\left(\mu_{i, k}^{M}\right.$ is induced by some $\left.M(j, k) \times M(i, j) \xrightarrow{\circ} M(i, k)\right)$.
Recall: enriched functors
A functor $F: \mathcal{T} \rightarrow \mathcal{T}^{\prime}$, with (\mathcal{T}, c, j) and $\left(\mathcal{T}^{\prime}, c^{\prime}, j^{\prime}\right)$, is \mathcal{C}-enriched if the maps $F_{A, B}: \mathcal{T}(A, B) \rightarrow \mathcal{T}^{\prime}(F(A), F(B))$ are morphisms in \mathcal{C}, s.t.

$\Rightarrow \underline{1-c e l l s}$ in $\operatorname{Mnd}(\mathcal{C}-\mathrm{Mat})$ are not \mathcal{C}-enriched functors

The double category of 2-monads

Solution: the double category Mnd(ID) of (double) monads

[Fiore, Gambino, Kock (2010)]
... categories, operads, multicategories and T-multicategories

Solution: the double category Mnd(ID) of (double) monads

[Fiore, Gambino, Kock (2010)]
... categories, operads, multicategories and T-multicategories can all be seen as monads in appropriate bicategories.

Solution: the double category Mnd(ID) of (double) monads

[Fiore, Gambino, Kock (2010)]
... categories, operads, multicategories and T-multicategories can all be seen as monads in appropriate bicategories. However, ... morphisms between them are not monad maps.

Solution: the double category Mnd(ID) of (double) monads

[Fiore, Gambino, Kock (2010)]
... categories, operads, multicategories and T-multicategories can all be seen as monads in appropriate bicategories. However, ... morphisms between them are not monad maps. E.g. while categories can be viewed as monads in the bicategory of spans,

Solution: the double category Mnd(ID) of (double) monads

[Fiore, Gambino, Kock (2010)]
... categories, operads, multicategories and T-multicategories can all be seen as monads in appropriate bicategories. However, ... morphisms between them are not monad maps. E.g. while categories can be viewed as monads in the bicategory of spans, functors are not monad maps therein.

Solution: the double category Mnd(ID) of (double) monads

[Fiore, Gambino, Kock (2010)]
... categories, operads, multicategories and T-multicategories can all be seen as monads in appropriate bicategories. However, ... morphisms between them are not monad maps. E.g. while categories can be viewed as monads in the bicategory of spans, functors are not monad maps therein.
To address this issue, we define the double category $\operatorname{Mnd}(\mathbb{D})$ of monads,

Solution: the double category Mnd(ID) of (double) monads

[Fiore, Gambino, Kock (2010)]
... categories, operads, multicategories and T-multicategories can all be seen as monads in appropriate bicategories. However, ... morphisms between them are not monad maps. E.g. while categories can be viewed as monads in the bicategory of spans, functors are not monad maps therein.
To address this issue, we define the double category $\operatorname{Mnd}(\mathbb{D})$ of monads, horizontal and vertical monad maps and monad squares

Solution: the double category Mnd(ID) of (double) monads

[Fiore, Gambino, Kock (2010)]
... categories, operads, multicategories and T-multicategories can all be seen as monads in appropriate bicategories. However, ... morphisms between them are not monad maps. E.g. while categories can be viewed as monads in the bicategory of spans, functors are not monad maps therein.
To address this issue, we define the double category $\operatorname{Mnd}(\mathbb{D})$ of monads, horizontal and vertical monad maps and monad squares in a double category \mathbb{D}.

Solution: the double category Mnd(ID) of (double) monads

[Fiore, Gambino, Kock (2010)]
... categories, operads, multicategories and T-multicategories can all be seen as monads in appropriate bicategories. However, ... morphisms between them are not monad maps. E.g. while categories can be viewed as monads in the bicategory of spans, functors are not monad maps therein.
To address this issue, we define the double category $\operatorname{Mnd}(\mathbb{D})$ of monads, horizontal and vertical monad maps and monad squares in a double category \mathbb{D}. Monads and horizontal monad maps in \mathbb{D} are exactly monads and monad maps in $\mathcal{H}(\mathbb{D})$,

Solution: the double category Mnd(ID) of (double) monads

[Fiore, Gambino, Kock (2010)]
... categories, operads, multicategories and T-multicategories can all be seen as monads in appropriate bicategories. However, ... morphisms between them are not monad maps. E.g. while categories can be viewed as monads in the bicategory of spans, functors are not monad maps therein.
To address this issue, we define the double category $\operatorname{Mnd}(\mathbb{D})$ of monads, horizontal and vertical monad maps and monad squares in a double category \mathbb{D}. Monads and horizontal monad maps in \mathbb{D} are exactly monads and monad maps in $\mathcal{H}(\mathbb{D})$, the horizontal 2-category of \mathbb{D},

Solution: the double category Mnd(ID) of (double) monads

[Fiore, Gambino, Kock (2010)]
... categories, operads, multicategories and T-multicategories can all be seen as monads in appropriate bicategories. However, ... morphisms between them are not monad maps. E.g. while categories can be viewed as monads in the bicategory of spans, functors are not monad maps therein.
To address this issue, we define the double category $\operatorname{Mnd}(\mathbb{D})$ of monads, horizontal and vertical monad maps and monad squares in a double category \mathbb{D}. Monads and horizontal monad maps in \mathbb{D} are exactly monads and monad maps in $\mathcal{H}(\mathbb{D})$, the horizontal 2-category of \mathbb{D}, while the definitions of vertical monad maps and monad squares in \mathbb{D}

Solution: the double category Mnd(ID) of (double) monads

[Fiore, Gambino, Kock (2010)]
... categories, operads, multicategories and T-multicategories can all be seen as monads in appropriate bicategories. However, ... morphisms between them are not monad maps. E.g. while categories can be viewed as monads in the bicategory of spans, functors are not monad maps therein.
To address this issue, we define the double category $\operatorname{Mnd}(\mathbb{D})$ of monads, horizontal and vertical monad maps and monad squares in a double category \mathbb{D}. Monads and horizontal monad maps in \mathbb{D} are exactly monads and monad maps in $\mathcal{H}(\mathbb{D})$, the horizontal 2-category of \mathbb{D}, while the definitions of vertical monad maps and monad squares in \mathbb{D} involve vertical arrows of \mathbb{D} that are not necessarily identities.

Solution: the double category Mnd(ID) of (double) monads

[Fiore, Gambino, Kock (2010)]
... categories, operads, multicategories and T-multicategories can all be seen as monads in appropriate bicategories. However, ... morphisms between them are not monad maps. E.g. while categories can be viewed as monads in the bicategory of spans, functors are not monad maps therein.
To address this issue, we define the double category $\operatorname{Mnd}(\mathbb{D})$ of monads, horizontal and vertical monad maps and monad squares in a double category \mathbb{D}. Monads and horizontal monad maps in \mathbb{D} are exactly monads and monad maps in $\mathcal{H}(\mathbb{D})$, the horizontal 2-category of \mathbb{D}, while the definitions of vertical monad maps and monad squares in \mathbb{D} involve vertical arrows of \mathbb{D} that are not necessarily identities.

This ... allows us to describe mathematical structures and morphisms between them

Solution: the double category Mnd(ID) of (double) monads

[Fiore, Gambino, Kock (2010)]
... categories, operads, multicategories and T-multicategories can all be seen as monads in appropriate bicategories. However, ... morphisms between them are not monad maps. E.g. while categories can be viewed as monads in the bicategory of spans, functors are not monad maps therein.
To address this issue, we define the double category $\operatorname{Mnd}(\mathbb{D})$ of monads, horizontal and vertical monad maps and monad squares in a double category \mathbb{D}. Monads and horizontal monad maps in \mathbb{D} are exactly monads and monad maps in $\mathcal{H}(\mathbb{D})$, the horizontal 2-category of \mathbb{D}, while the definitions of vertical monad maps and monad squares in \mathbb{D} involve vertical arrows of \mathbb{D} that are not necessarily identities.

This ... allows us to describe mathematical structures and morphisms between them as monads and vertical monad maps in appropriate double categories.

Solution: the double category Mnd(ID) of (double) monads

[Fiore, Gambino, Kock (2010)]
... categories, operads, multicategories and T-multicategories can all be seen as monads in appropriate bicategories. However, ... morphisms between them are not monad maps. E.g. while categories can be viewed as monads in the bicategory of spans, functors are not monad maps therein.
To address this issue, we define the double category $\operatorname{Mnd}(\mathbb{D})$ of monads, horizontal and vertical monad maps and monad squares in a double category \mathbb{D}. Monads and horizontal monad maps in \mathbb{D} are exactly monads and monad maps in $\mathcal{H}(\mathbb{D})$, the horizontal 2-category of \mathbb{D}, while the definitions of vertical monad maps and monad squares in \mathbb{D} involve vertical arrows of \mathbb{D} that are not necessarily identities.

This ... allows us to describe mathematical structures and morphisms between them as monads and vertical monad maps in appropriate double categories. E.g. small categories and functors can be viewed as monads and vertical monad maps in the the double category of spans.

The double category Mnd(ID) of (double) monads

0-cells:

Definition 2.4. Let \mathbb{C} be a double category.
(i) A monad is an endomorphism (X, P) equipped with squares

satisfying the associativity law

and the unit laws

The double category Mnd(ID) of (double) monads

1v-cells:

(iii) A vertical monad map $(u, \bar{u}):(X, P) \rightarrow\left(X^{\prime}, P^{\prime}\right)$ is a vertical endomorphism map between the underlying endomorphisms satisfying the following conditions:

The double category Mnd(ID) of (double) monads

1v-cells:

(iii) A vertical monad map $(u, \bar{u}):(X, P) \rightarrow\left(X^{\prime}, P^{\prime}\right)$ is a vertical endomorphism map between the underlying endomorphisms satisfying the following conditions:

$\Rightarrow 1 \mathrm{v}$-cells in $\operatorname{Mnd}(\underline{\underline{\mathcal{C}} \text { - Mat }})$ are C-enriched functors.

Recovering Ehresmann's result

Recovering Ehresmann's result

We saw that:
the oplax functor Int: \mathcal{C} - Mat $\rightarrow \operatorname{Span}_{d}(\mathcal{C})$ (biequivalence)
restricted to the 2-cat. $\operatorname{Mnd}(\bullet)$ would not recover Ehresmann's result.

Recovering Ehresmann's result

We saw that:
the oplax functor Int: \mathcal{C} - $\mathrm{Mat} \rightarrow \operatorname{Span}_{d}(\mathcal{C})$ (biequivalence)
restricted to the 2-cat. Mnd (\bullet) would not recover Ehresmann's result.
Rather: extending from bicategories to pseudodouble categories \mathcal{C}-Mat and $\underline{\underline{\text { Span }}}_{d}(\mathcal{C})$

Recovering Ehresmann's result

We saw that:
the oplax functor $\operatorname{Int}: \mathcal{C}$ - Mat $\rightarrow \operatorname{Span}_{d}(\mathcal{C})$ (biequivalence)
restricted to the 2-cat. Mnd (\bullet) would not recover Ehresmann's result.
Rather: extending from bicategories to pseudodouble categories \mathcal{C}-Mat and $\underline{\underline{\text { Span }}}_{d}(\mathcal{C})$ the oplax functor Int : \mathcal{C} - Mat \rightarrow Span $_{d}(\mathcal{C})$ extends to a double functor Int : \mathcal{C} - $\underline{\underline{\text { Mat }}} \rightarrow \underline{\underline{\text { Span }_{d}}}{ }_{d}(\mathcal{C})$.

Recovering Ehresmann's result

We saw that:
the oplax functor Int: \mathcal{C} - Mat $\rightarrow \operatorname{Span}_{d}(\mathcal{C})$ (biequivalence)
restricted to the 2-cat. $\operatorname{Mnd}(\bullet)$ would not recover Ehresmann's result.
Rather: extending from bicategories to pseudodouble categories \mathcal{C}-Mat and $\underline{\underline{S p a n}}_{d}(\mathcal{C})$ the oplax functor Int: \mathcal{C} - Mat $\rightarrow \operatorname{Span}_{d}(\mathcal{C})$ extends to a

And one obtains:
Theorem. Let V be a cartesian closed category with finite limits and small coproducts. TFAE: 1. V is extensive, and 2. The

Recovering Ehresmann's result

We saw that:
the oplax functor Int: \mathcal{C} - Mat $\rightarrow \operatorname{Span}_{d}(\mathcal{C})$ (biequivalence)
restricted to the 2-cat. $\operatorname{Mnd}(\bullet)$ would not recover Ehresmann's result.
Rather: extending from bicategories to pseudodouble categories \mathcal{C}-Mat and $\underline{\underline{S p a n}}_{d}(\mathcal{C})$ the oplax functor Int: \mathcal{C} - Mat $\rightarrow \operatorname{Span}_{d}(\mathcal{C})$ extends to a

And one obtains:
Theorem. Let V be a cartesian closed category with finite limits and small coproducts. TFAE: 1. V is extensive, and 2. The

Corollary. Let \mathcal{C} be an extensive cartesian closed category with finite limits and small coproducts. Then $\Gamma^{\prime}: \mathcal{C}$ - $\mathrm{Cat} \rightarrow \mathrm{Cat}_{d}(\mathcal{C})$ is an adjoint equivalence functor.

