Bicategories,
 2-monads, enriched and internal categories

Bojana Femić

(minicourse, advanced)
Cimpa School
"From Dynamics to Algebra and Rep. Theory and Back"

15 February 2022 (Second class)
Mathematical Institute of
Serbian Academy of Sciences and Arts
Belgrade (Serbia)

Overview of the 2 nd class

- categories and monoidal categories
- bicategories and 2-categories
- strictification theorems
- double categories (as specific internal categories)
- monads and 2-monads
- internal categories (as specific 2-monads)
- enriched categories and when they induce internal categories
- 2-monads in the bicategories of spans and matrices
- double category of monads (why "vertical morphisms" of monads are useful)

Double categories

Double categories

Bicategory:

- 0-cells
- 1-cells
- 2-cells

Double categories

Bicategory:

- 0-cells
- 1-cells
- 2-cells

Double category:

- 0-cells
- vertical 1-cells
- horizontal 1-cells
- squares (2-cells)

Double category as internal category

A double category is an internal category in the category Cat ${ }_{1}$.

Double category as internal category

A double category is an internal category in the category Cat $_{1}$.
There are: • categories $C_{0}, C_{1}\left(0\right.$-cells in Cat $\left._{1}\right)$

Double category as internal category

A double category is an internal category in the category Cat ${ }_{1}$.
There are: - categories C_{0}, C_{1} (0 -cells in Cat $_{1}$)

- functors (1-cells in Cat ${ }_{1}$)
$s, t: C_{1} \rightarrow C_{0}, \quad u: C_{0} \rightarrow C_{1} \quad$ and $c: C_{1} \times c_{0} C_{1} \rightarrow C_{1}$

Double category as internal category

A double category is an internal category in the category Cat $_{1}$.
There are:

- categories C_{0}, C_{1} (0-cells in Cat ${ }_{1}$)
- functors (1-cells in Cat_{1})
$s, t: C_{1} \rightarrow C_{0}, \quad u: C_{0} \rightarrow C_{1} \quad$ and $c: C_{1} \times c_{0} C_{1} \rightarrow C_{1}$
s.t.
- c is associative and unital.

Double category as internal category

A double category is an internal category in the category Cat ${ }_{1}$.
There are:

- categories C_{0}, C_{1} (0-cells in Cat ${ }_{1}$)
- functors (1-cells in Cat_{1})
$s, t: C_{1} \rightarrow C_{0}, \quad u: C_{0} \rightarrow C_{1} \quad$ and $c: C_{1} \times c_{0} C_{1} \rightarrow C_{1}$
s.t.
- c is associative and unital.
- 0-cells
- vertical 1-cells
- horizontal 1-cells $\stackrel{\rightharpoonup}{A^{\prime}} \xrightarrow{g} \stackrel{\downarrow}{B^{\prime}}$
- squares (2-cells)

Double category as internal category

A double category is an internal category in the category Cat ${ }_{1}$.
There are:

- categories C_{0}, C_{1} (0-cells in Cat ${ }_{1}$)
- functors (1-cells in Cat_{1})
$s, t: C_{1} \rightarrow C_{0}, \quad u: C_{0} \rightarrow C_{1} \quad$ and $c: C_{1} \times c_{0} C_{1} \rightarrow C_{1}$
s.t.
- c is associative and unital.
- 0-cells
- vertical 1-cells
- horizontal 1-cells $A^{\prime} \xrightarrow{g} B^{\prime}$
- squares (2-cells)
C_{0} : 0 -cells and 1 v -cells, $C_{1}: 1 \mathrm{~h}$-cells and 2 -cells.

Pseudodouble category as internal category

A pseudodouble category is a pseudocategory internal in the 2-category Cat $_{2}$.

Pseudodouble category as internal category

A pseudodouble category is a pseudocategory internal in the 2-category Cat $_{2}$.
(an internal category in Cat_{2})

Pseudodouble category as internal category

A pseudodouble category is a pseudocategory internal in the 2-category Cat $_{2}$.
(an internal category in Cat_{2})
There are:

- categories C_{0}, C_{1} (0-cells in Cat_{2})
- functors (1-cells in Cat ${ }_{2}$)
$s, t: C_{1} \rightarrow C_{0}, \quad u: C_{0} \rightarrow C_{1} \quad$ and $c: C_{1} \times c_{0} C_{1} \rightarrow C_{1}$

Pseudodouble category as internal category

A pseudodouble category is a pseudocategory internal in the 2-category Cat $_{2}$.
(an internal category in Cat_{2})
There are:

- categories C_{0}, C_{1} (0-cells in Cat $_{2}$)
- functors (1-cells in Cat_{2})
$s, t: C_{1} \rightarrow C_{0}, \quad u: C_{0} \rightarrow C_{1} \quad$ and $c: C_{1} \times c_{0} C_{1} \rightarrow C_{1}$
- natural transformations (2-cells in Cat_{2})
$\alpha: c \otimes\left(i d C_{C_{1}} \times c_{0} c\right) \Rightarrow c \otimes\left(c \times c_{0} i d_{C_{1}}\right)$
$\lambda: c \otimes\left(u \times C_{0} i d_{C_{1}}\right) \Rightarrow i d_{C_{1}}$ $\rho: c \otimes\left(i d_{C_{1}} \times C_{0} u\right) \Rightarrow i d_{C_{1}}$
which satisfy a pentagon and a triangle.

Bicategories and pseudodouble categories

A bicategory known to everyone:
0 : algebras $A, B \ldots, \quad 1: A$ - B-bimodules, $\quad 2$: bimodule morphisms.

Bicategories and pseudodouble categories

A bicategory known to everyone:
0 : algebras $A, B \ldots, \quad 1: A$ - B-bimodules, $\quad 2$ bimodule morphisms.
Pseudodouble category:

- 0: algebras A, B
- 1v: alg. morphisms
- 1h: A - B-bimodules
- 2: bimodule morphisms*

Bicategories and pseudodouble categories

A bicategory known to everyone:
0 : algebras $A, B \ldots, \quad 1: A$ - B-bimodules, $\quad 2$ bimodule morphisms.

Pseudodouble category:

- 0: algebras A, B
- 1v: alg. morphisms

- 1h: A - B-bimodules
- 2: bimodule morphisms*
$\alpha: M \rightarrow N \quad A$ - B-bimodule morphism

$$
a \cdot n \cdot b:=g(a) \cdot n \cdot f(b)
$$

Bicategories and pseudodouble categories

- In every pseudodouble category there is a bicategory:

Bicategories and pseudodouble categories

- In every pseudodouble category there is a bicategory: for vertical morphisms take only identities,

Bicategories and pseudodouble categories

- In every pseudodouble category there is a bicategory: for vertical morphisms take only identities, and correspondingly "globular 2-cells".

Bicategories and pseudodouble categories

- In every pseudodouble category there is a bicategory: for vertical morphisms take only identities, and correspondingly "globular 2-cells".

$$
\begin{aligned}
& A \xrightarrow{f} B
\end{aligned}
$$

Bicategories and pseudodouble categories

- In every pseudodouble category there is a bicategory: for vertical morphisms take only identities, and correspondingly "globular 2-cells".

$$
=\left.\right|_{A} \xrightarrow{A} \stackrel{f}{l} B=
$$

(This is the horizontal bicategory $\mathcal{H}(\mathbb{D})$ of the pseudodouble category D.)

Bicategories and pseudodouble categories

- In every pseudodouble category there is a bicategory: for vertical morphisms take only identities, and correspondingly "globular 2-cells".
(This is the horizontal bicategory $\mathcal{H}(\mathbb{D})$ of the pseudodouble category D.)
- Each bicategory can be embedded into a pseudodouble category.

Bicategories and pseudodouble categories

- In every pseudodouble category there is a bicategory: for vertical morphisms take only identities, and correspondingly "globular 2-cells".
(This is the horizontal bicategory $\mathcal{H}(\mathbb{D})$ of the pseudodouble category D.)
- Each bicategory can be embedded into a pseudodouble category.
- Recall that every pseudodouble category is double-equivalent to a double category.

Monads

and 2-monads

Monads

A monad (T, μ, η) in a category \mathcal{C} consists of:

Monads

A monad (T, μ, η) in a category \mathcal{C} consists of: functor $T: \mathcal{C} \rightarrow \mathcal{C}+$ nat. tr. $\mu: T \circ T \rightarrow T \& \eta: I d_{\mathcal{C}} \rightarrow T$ s.t.:

Monads

A monad (T, μ, η) in a category \mathcal{C} consists of: functor $T: \mathcal{C} \rightarrow \mathcal{C}+$ nat. tr. $\mu: T \circ T \rightarrow T \& \eta: I d_{\mathcal{C}} \rightarrow T$ s.t.:

(These diagrams are in the monoidal category $\left(\operatorname{Fun}(\mathcal{C}, \mathcal{C}), \circ, I \mathrm{I}_{\mathcal{C}}\right)$.)

Monads

A monad (T, μ, η) in a category \mathcal{C} consists of: functor $T: \mathcal{C} \rightarrow \mathcal{C}+$ nat. tr. $\mu: T \circ T \rightarrow T \& \eta: I d_{\mathcal{C}} \rightarrow T$ s.t.:

(These diagrams are in the monoidal category $\left.\left(\operatorname{Fun}(\mathcal{C}, \mathcal{C}), \circ, \operatorname{ld}_{\mathcal{C}}\right).\right)$
Example: in a monoidal category \mathcal{C} any algebra $A \in \mathcal{C}$ determines a monad $\overline{\text { by } A \otimes-}: \mathcal{C} \rightarrow \mathcal{C}$.

Monads

A monad (T, μ, η) in a category \mathcal{C} consists of: functor $T: \mathcal{C} \rightarrow \mathcal{C}+$ nat. tr. $\mu: T \circ T \rightarrow T \& \eta: I d_{\mathcal{C}} \rightarrow T$ s.t.:

(These diagrams are in the monoidal category $\left.\left(\operatorname{Fun}(\mathcal{C}, \mathcal{C}), \circ, \operatorname{ld}_{\mathcal{C}}\right).\right)$
Example: in a monoidal category \mathcal{C} any algebra $A \in \mathcal{C}$ determines a monad $\overline{\text { by } A \otimes-}: \mathcal{C} \rightarrow \mathcal{C}$.

Morphisms of monads
are nat. transf. $f: T \rightarrow P$ s.t.:

2-monads

2 -monad $=$ monad in a 2 -category \mathcal{K} :

2-monads

$2-$ monad $=$ monad in a 2 -category \mathcal{K} :
A 2-monad consists of:
a 0 -cell \mathcal{A}, a 1-cell $T: \mathcal{A} \rightarrow \mathcal{A}$ and 2-cells $\mu: T T \Rightarrow T$ and $\eta: \operatorname{ld}_{\mathcal{A}} \Rightarrow T$ s.t.

2-monads

$2-$ monad $=$ monad in a 2 -category \mathcal{K} :
A 2-monad consists of:
a 0 -cell \mathcal{A}, a 1-cell $T: \mathcal{A} \rightarrow \mathcal{A}$ and 2-cells $\mu: T T \Rightarrow T$ and $\eta: \mathrm{Id}_{\mathcal{A}} \Rightarrow T$ s.t.

(Note the shift in dimension in the meaning of diagrams.)

2-monads

$2-$ monad $=$ monad in a 2 -category \mathcal{K} :
A 2-monad consists of:
a 0 -cell \mathcal{A}, a 1-cell $T: \mathcal{A} \rightarrow \mathcal{A}$ and 2-cells $\mu: T T \Rightarrow T$ and $\eta: \operatorname{ld}_{\mathcal{A}} \Rightarrow T$ s.t.

(Note the shift in dimension in the meaning of diagrams.)

- A monad on a category $\mathcal{C}(T: \mathcal{C} \rightarrow \mathcal{C})$ is a 2 -monad in $\mathcal{K}=\mathrm{Cat}_{2}$ (with $\mathcal{A}=\mathcal{C}$).

Strict monoidal categories as 2-monads

Let \mathcal{C} be a strict monoidal category.

Strict monoidal categories as 2-monads

Let \mathcal{C} be a strict monoidal category. Set $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1}$.

Strict monoidal categories as 2-monads

Let \mathcal{C} be a strict monoidal category.
Set $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1}$.
For a category $\mathcal{M} \in \mathrm{Cat}_{1}$ it is $T(\mathcal{M})=\mathcal{C} \times \mathcal{M}$.

Strict monoidal categories as 2-monads

Let \mathcal{C} be a strict monoidal category.
Set $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1}$.
For a category $\mathcal{M} \in \mathrm{Cat}_{1}$ it is $T(\mathcal{M})=\mathcal{C} \times \mathcal{M}$.
For a functor $F: \mathcal{M} \rightarrow \mathcal{N}\left(1\right.$-cell in Cat $\left._{1}\right)$ it is $T(F)=\mathcal{C} \times F: \mathcal{C} \times \mathcal{M}$ $\rightarrow \mathcal{C} \times \mathcal{N}$

Strict monoidal categories as 2-monads

Let \mathcal{C} be a strict monoidal category.
Set $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1}$.
For a category $\mathcal{M} \in \mathrm{Cat}_{1}$ it is $T(\mathcal{M})=\mathcal{C} \times \mathcal{M}$.
For a functor $F: \mathcal{M} \rightarrow \mathcal{N}\left(1\right.$-cell in $\left.\mathrm{Cat}_{1}\right)$ it is $T(F)=\mathcal{C} \times F: \mathcal{C} \times \mathcal{M}$ $\rightarrow \mathcal{C} \times \mathcal{N}$ and hence $T(G F)=T(G) T(F)$.

Strict monoidal categories as 2-monads

Let \mathcal{C} be a strict monoidal category.
Set $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1}$.
For a category $\mathcal{M} \in \mathrm{Cat}_{1}$ it is $T(\mathcal{M})=\mathcal{C} \times \mathcal{M}$.
For a functor $F: \mathcal{M} \rightarrow \mathcal{N}\left(1\right.$-cell in $\left.\mathrm{Cat}_{1}\right)$ it is $T(F)=\mathcal{C} \times F: \mathcal{C} \times \mathcal{M}$ $\rightarrow \mathcal{C} \times \mathcal{N}$ and hence $T(G F)=T(G) T(F)$. Then T is a functor on the cat. Cat ${ }_{1}$.

Strict monoidal categories as 2-monads

Let \mathcal{C} be a strict monoidal category.
Set $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1}$.
For a category $\mathcal{M} \in \mathrm{Cat}_{1}$ it is $T(\mathcal{M})=\mathcal{C} \times \mathcal{M}$.
For a functor $F: \mathcal{M} \rightarrow \mathcal{N}\left(1\right.$-cell in $\left.\mathrm{Cat}_{1}\right)$ it is $T(F)=\mathcal{C} \times F: \mathcal{C} \times \mathcal{M}$ $\rightarrow \mathcal{C} \times \mathcal{N}$ and hence $T(G F)=T(G) T(F)$. Then T is a functor on the cat. Cat ${ }_{1}$.

- Then T is a 2-monad in the 2-category Cat ${ }_{2}$

Strict monoidal categories as 2-monads

Let \mathcal{C} be a strict monoidal category.
Set $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1}$.
For a category $\mathcal{M} \in \mathrm{Cat}_{1}$ it is $T(\mathcal{M})=\mathcal{C} \times \mathcal{M}$.
For a functor $F: \mathcal{M} \rightarrow \mathcal{N}\left(1\right.$-cell in $\left.\mathrm{Cat}_{1}\right)$ it is $T(F)=\mathcal{C} \times F: \mathcal{C} \times \mathcal{M}$ $\rightarrow \mathcal{C} \times \mathcal{N}$ and hence $T(G F)=T(G) T(F)$. Then T is a functor on the cat. Cat ${ }_{1}$.

- Then T is a 2-monad in the 2-category Cat $_{2}$ with $\mu_{T}=\otimes \times-$

Strict monoidal categories as 2-monads

Let \mathcal{C} be a strict monoidal category.
Set $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1}$.
For a category $\mathcal{M} \in \mathrm{Cat}_{1}$ it is $T(\mathcal{M})=\mathcal{C} \times \mathcal{M}$.
For a functor $F: \mathcal{M} \rightarrow \mathcal{N}\left(1\right.$-cell in Cat $\left._{1}\right)$ it is $T(F)=\mathcal{C} \times F: \mathcal{C} \times \mathcal{M}$ $\rightarrow \mathcal{C} \times \mathcal{N}$ and hence $T(G F)=T(G) T(F)$. Then T is a functor on the cat. Cat ${ }_{1}$.

- Then T is a 2-monad in the 2-category Cat $_{2}$ with $\mu_{T}=\otimes \times$ - and $\eta_{T}(*): \operatorname{ld}_{\mathrm{Cat}_{1}}(*) \rightarrow T(*)$

Strict monoidal categories as 2-monads

Let \mathcal{C} be a strict monoidal category.
Set $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1}$.
For a category $\mathcal{M} \in \mathrm{Cat}_{1}$ it is $T(\mathcal{M})=\mathcal{C} \times \mathcal{M}$.
For a functor $F: \mathcal{M} \rightarrow \mathcal{N}\left(1\right.$-cell in Cat $\left._{1}\right)$ it is $T(F)=\mathcal{C} \times F: \mathcal{C} \times \mathcal{M}$ $\rightarrow \mathcal{C} \times \mathcal{N}$ and hence $T(G F)=T(G) T(F)$. Then T is a functor on the cat. Cat ${ }_{1}$.

- Then T is a 2-monad in the 2-category Cat $_{2}$ with $\mu_{T}=\otimes \times$ - and $\eta_{T}(*): \mathrm{Id}_{\mathrm{Cat}_{1}}(*) \rightarrow T(*)$ i.e. $\eta_{T}(*): * \rightarrow \mathcal{C} \times *$

Strict monoidal categories as 2-monads

Let \mathcal{C} be a strict monoidal category.
Set $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1}$.
For a category $\mathcal{M} \in \mathrm{Cat}_{1}$ it is $T(\mathcal{M})=\mathcal{C} \times \mathcal{M}$.
For a functor $F: \mathcal{M} \rightarrow \mathcal{N}\left(1\right.$-cell in $\left.\mathrm{Cat}_{1}\right)$ it is $T(F)=\mathcal{C} \times F: \mathcal{C} \times \mathcal{M}$ $\rightarrow \mathcal{C} \times \mathcal{N}$ and hence $T(G F)=T(G) T(F)$. Then T is a functor on the cat.
Cat ${ }_{1}$.

- Then T is a 2-monad in the 2-category Cat $_{2}$ with $\mu_{T}=\otimes \times$ - and $\eta_{T}(*): \operatorname{Id}_{\mathrm{Cat}_{1}}(*) \rightarrow T(*)$ i.e. $\eta_{T}(*): * \rightarrow \mathcal{C} \times *$ given by the unity functor $U: * \rightarrow \mathcal{C}$ of \mathcal{C}, determining the unit object I.

Strict monoidal categories as 2-monads

Let \mathcal{C} be a strict monoidal category.
Set $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1}$.
For a category $\mathcal{M} \in$ Cat $_{1}$ it is $T(\mathcal{M})=\mathcal{C} \times \mathcal{M}$.
For a functor $F: \mathcal{M} \rightarrow \mathcal{N}\left(1\right.$-cell in Cat $\left._{1}\right)$ it is $T(F)=\mathcal{C} \times F: \mathcal{C} \times \mathcal{M}$ $\rightarrow \mathcal{C} \times \mathcal{N}$ and hence $T(G F)=T(G) T(F)$. Then T is a functor on the cat.
Cat ${ }_{1}$.

- Then T is a 2-monad in the 2-category Cat $_{2}$ with $\mu_{T}=\otimes \times$ - and $\eta_{T}(*): \operatorname{ld}_{C_{a t}}(*) \rightarrow T(*)$ i.e. $\eta_{T}(*): * \rightarrow \mathcal{C} \times *$ given by the unity functor $U: * \rightarrow \mathcal{C}$ of \mathcal{C}, determining the unit object I. (strictness of \mathcal{C}, versus pseudomonads)

Strict monoidal categories as 2-monads

Let \mathcal{C} be a strict monoidal category.
Set $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1}$.
For a category $\mathcal{M} \in$ Cat $_{1}$ it is $T(\mathcal{M})=\mathcal{C} \times \mathcal{M}$.
For a functor $F: \mathcal{M} \rightarrow \mathcal{N}\left(1\right.$-cell in Cat $\left._{1}\right)$ it is $T(F)=\mathcal{C} \times F: \mathcal{C} \times \mathcal{M}$ $\rightarrow \mathcal{C} \times \mathcal{N}$ and hence $T(G F)=T(G) T(F)$. Then T is a functor on the cat.
Cat ${ }_{1}$.

- Then T is a 2-monad in the 2-category Cat $_{2}$ with $\mu_{T}=\otimes \times$ - and $\eta_{T}(*): \operatorname{ld}_{C_{a t}}(*) \rightarrow T(*)$ i.e. $\eta_{T}(*): * \rightarrow \mathcal{C} \times *$ given by the unity functor $U: * \rightarrow \mathcal{C}$ of \mathcal{C}, determining the unit object I. (strictness of \mathcal{C}, versus pseudomonads)

Cat $_{1}$ as a category is a 0 -cell in Cat_{2},

Strict monoidal categories as 2-monads

Let \mathcal{C} be a strict monoidal category.
Set $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1}$.
For a category $\mathcal{M} \in \mathrm{Cat}_{1}$ it is $T(\mathcal{M})=\mathcal{C} \times \mathcal{M}$.
For a functor $F: \mathcal{M} \rightarrow \mathcal{N}\left(1\right.$-cell in Cat $\left._{1}\right)$ it is $T(F)=\mathcal{C} \times F: \mathcal{C} \times \mathcal{M}$ $\rightarrow \mathcal{C} \times \mathcal{N}$ and hence $T(G F)=T(G) T(F)$. Then T is a functor on the cat.
Cat ${ }_{1}$.

- Then T is a 2-monad in the 2-category Cat $_{2}$ with $\mu_{T}=\otimes \times-$ and $\eta_{T}(*): \operatorname{Id}_{\mathrm{Cat}_{1}}(*) \rightarrow T(*)$ i.e. $\eta_{T}(*): * \rightarrow \mathcal{C} \times *$ given by the unity functor $U: * \rightarrow \mathcal{C}$ of \mathcal{C}, determining the unit object I. (strictness of \mathcal{C}, versus pseudomonads)

Cat $_{1}$ as a category is a 0 -cell in Cat_{2}, T as a functor is a 1 -cell in Cat_{2},

Strict monoidal categories as 2-monads

Let \mathcal{C} be a strict monoidal category.
Set $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1}$.
For a category $\mathcal{M} \in \mathrm{Cat}_{1}$ it is $T(\mathcal{M})=\mathcal{C} \times \mathcal{M}$.
For a functor $F: \mathcal{M} \rightarrow \mathcal{N}\left(1\right.$-cell in Cat $\left._{1}\right)$ it is $T(F)=\mathcal{C} \times F: \mathcal{C} \times \mathcal{M}$ $\rightarrow \mathcal{C} \times \mathcal{N}$ and hence $T(G F)=T(G) T(F)$. Then T is a functor on the cat. Cat ${ }_{1}$.

- Then T is a 2-monad in the 2-category Cat $_{2}$ with $\mu_{T}=\otimes \times-$ and $\eta_{T}(*): \operatorname{Id}_{\mathrm{Cat}_{1}}(*) \rightarrow T(*)$ i.e. $\eta_{T}(*): * \rightarrow \mathcal{C} \times *$ given by the unity functor $U: * \rightarrow \mathcal{C}$ of \mathcal{C}, determining the unit object I. (strictness of \mathcal{C}, versus pseudomonads)

Cat $_{1}$ as a category is a 0 -cell in Cat_{2},
T as a functor is a 1 -cell in Cat_{2},
and μ_{T}, η_{T} as natural transformations are 2-cells in Cat ${ }_{2}$.

2-monads yielding strict monoidal categories

For the 2-monad $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1}$

2-monads yielding strict monoidal categories

For the 2-monad $T=\mathcal{C} \times-: \mathrm{Cat}_{1} \rightarrow \mathrm{Cat}_{1} \quad$ it is $T(*)=\mathcal{C}$.

2-monads yielding strict monoidal categories

For the 2-monad $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1} \quad$ it is $T(*)=\mathcal{C}$.

Conversely: any 2-monad $T: \mathrm{Cat}_{1} \rightarrow \mathrm{Cat}_{1}{\text { in } \mathrm{Cat}_{2}}^{2}$
of the form $T=T(*) \times-$

2-monads yielding strict monoidal categories

For the 2-monad $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1} \quad$ it is $T(*)=\mathcal{C}$.

Conversely: any 2-monad $T: \mathrm{Cat}_{1} \rightarrow \mathrm{Cat}_{1}$ in Cat_{2}
of the form $T=T(*) \times-$
yields a strict monoidal category $T(*)$.

2-monads yielding strict monoidal categories

For the 2-monad $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1} \quad$ it is $T(*)=\mathcal{C}$.

Conversely: any 2-monad $T: \mathrm{Cat}_{1} \rightarrow \mathrm{Cat}_{1}{\text { in } \mathrm{Cat}_{2}}^{2}$
of the form $T=T(*) \times-$
yields a strict monoidal category $T(*)$.

$$
(T T(*)=T(\mathcal{C}) \stackrel{\text { cond. }}{=} \mathcal{C} \times \mathcal{C})
$$

The 2-category $\operatorname{Mnd}(\mathcal{K})$

(of 2-monads)

The 2-category $\operatorname{Mnd}(\mathcal{K})$ of monads in \mathcal{K}

0 -cells:
2-monads $\left(\mathcal{A}, T: \mathcal{A} \rightarrow \mathcal{A}, \mu_{T}: T T \rightarrow T, \eta_{T}: \operatorname{ld}_{\mathcal{A}} \rightarrow T\right)$

The 2-category $\operatorname{Mnd}(\mathcal{K})$ of monads in \mathcal{K}

0 -cells:
2-monads $\left(\mathcal{A}, T: \mathcal{A} \rightarrow \mathcal{A}, \mu_{T}: T T \rightarrow T, \eta_{T}: \operatorname{ld}_{\mathcal{A}} \rightarrow T\right)$
1-cells: pairs $(X, \psi):(\mathcal{A}, T) \rightarrow\left(\mathcal{A}^{\prime}, T^{\prime}\right)$ where $X: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ is a 1-cell

The 2-category $\operatorname{Mnd}(\mathcal{K})$ of monads in \mathcal{K}

0 -cells:
2-monads $\left(\mathcal{A}, T: \mathcal{A} \rightarrow \mathcal{A}, \mu_{T}: T T \rightarrow T, \eta_{T}: \operatorname{ld}_{\mathcal{A}} \rightarrow T\right)$
1-cells: pairs $(X, \psi):(\mathcal{A}, T) \rightarrow\left(\mathcal{A}^{\prime}, T^{\prime}\right)$ where $X: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ is a 1-cell and $\psi: T^{\prime} X \Rightarrow X T$ a 2 -cell

The 2-category $\operatorname{Mnd}(\mathcal{K})$ of monads in \mathcal{K}

0 -cells:
2-monads $\left(\mathcal{A}, T: \mathcal{A} \rightarrow \mathcal{A}, \mu_{T}: T T \rightarrow T, \eta_{T}: \operatorname{ld}_{\mathcal{A}} \rightarrow T\right)$
1-cells: pairs $(X, \psi):(\mathcal{A}, T) \rightarrow\left(\mathcal{A}^{\prime}, T^{\prime}\right)$ where $X: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ is a 1-cell and $\psi: T^{\prime} X \Rightarrow X T$ a 2-cell s.t.

$$
\begin{aligned}
& \underset{\left.\right|_{T} ^{\psi}}{\substack{x}}=\left.\left.\right|_{x T} ^{x}\right|_{T} ^{x}
\end{aligned}
$$

The 2-category $\operatorname{Mnd}(\mathcal{K})$ of monads in \mathcal{K}

0 -cells:
2-monads $\left(\mathcal{A}, T: \mathcal{A} \rightarrow \mathcal{A}, \mu_{T}: T T \rightarrow T, \eta_{T}: \operatorname{ld}_{\mathcal{A}} \rightarrow T\right)$
1-cells: pairs $(X, \psi):(\mathcal{A}, T) \rightarrow\left(\mathcal{A}^{\prime}, T^{\prime}\right)$ where $X: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ is a 1-cell and $\psi: T^{\prime} X \Rightarrow X T$ a 2 -cell s.t.

2-cells: $(X, \psi) \Rightarrow\left(Y, \psi^{\prime}\right)$ are given by 2-cells $\zeta: X \rightarrow Y$ in \mathcal{K} satisfying:

$$
\begin{gathered}
T^{\prime} x \\
\Psi_{\psi}^{\psi} \\
\hline \zeta \\
Y T
\end{gathered}=\begin{gathered}
T^{\prime} x \\
Y \zeta \\
Y \psi^{\prime} \\
Y T
\end{gathered}
$$

Compositions in $\mathrm{Mnd}(\mathcal{K})$

Compositions in $\mathrm{Mnd}(\mathcal{K})$

Compositions in $\mathrm{Mnd}(\mathcal{K})$

T-algebras

T-algebras

For a monad $T: \mathcal{C} \rightarrow \mathcal{C}$ a T-algebra is an object $X \in \mathcal{C}$ with a morphism $\nu: T(X) \rightarrow X$ in \mathcal{C} s.t.

and

T-algebras

For a monad $T: \mathcal{C} \rightarrow \mathcal{C}$ a T-algebra is an object $X \in \mathcal{C}$ with a morphism $\nu: T(X) \rightarrow X$ in \mathcal{C} s.t.

Example: For a monad $T=A \otimes-: \mathcal{C} \rightarrow \mathcal{C}$ where A is an algebra and \mathcal{C} a monoidal cat., a T-algebra is precisely an A-module in \mathcal{C}.

T-algebras

For a monad $T: \mathcal{C} \rightarrow \mathcal{C}$ a T-algebra is an object $X \in \mathcal{C}$ with a morphism $\nu: T(X) \rightarrow X$ in \mathcal{C} s.t.

Example: For a monad $T=A \otimes-: \mathcal{C} \rightarrow \mathcal{C}$ where A is an algebra and \mathcal{C} a monoidal cat., a T-algebra is precisely an A-module in \mathcal{C}.

- For a 2-monad $\left(\mathcal{A}, T: \mathcal{A} \rightarrow \mathcal{A}, \mu_{T}: T T \rightarrow T, \eta_{T}: \operatorname{Id}_{\mathcal{A}} \rightarrow T\right)$ in \mathcal{K}

T-algebras

For a monad $T: \mathcal{C} \rightarrow \mathcal{C}$ a T-algebra is an object $X \in \mathcal{C}$ with a morphism $\nu: T(X) \rightarrow X$ in \mathcal{C} s.t.

Example: For a monad $T=A \otimes-: \mathcal{C} \rightarrow \mathcal{C}$ where A is an algebra and \mathcal{C} a monoidal cat., a T-algebra is precisely an A-module in \mathcal{C}.

- For a 2-monad $\left(\mathcal{A}, T: \mathcal{A} \rightarrow \mathcal{A}, \mu_{T}: T T \rightarrow T, \eta_{T}: \operatorname{ld}_{\mathcal{A}} \rightarrow T\right)$ in \mathcal{K} a T-algebra is a 1-cell $X: \mathcal{A}^{\prime} \rightarrow \mathcal{A}$

T-algebras

For a monad $T: \mathcal{C} \rightarrow \mathcal{C}$ a T-algebra is an object $X \in \mathcal{C}$ with a morphism $\nu: T(X) \rightarrow X$ in \mathcal{C} s.t.

Example: For a monad $T=A \otimes-: \mathcal{C} \rightarrow \mathcal{C}$ where A is an algebra and \mathcal{C} a monoidal cat., a T-algebra is precisely an A-module in \mathcal{C}.

- For a 2-monad $\left(\mathcal{A}, T: \mathcal{A} \rightarrow \mathcal{A}, \mu_{T}: T T \rightarrow T, \eta_{T}: \operatorname{ld}_{\mathcal{A}} \rightarrow T\right)$ in \mathcal{K} a T-algebra is a 1 -cell $X: \mathcal{A}^{\prime} \rightarrow \mathcal{A}$ with a 2 -cell $\nu: T X \Rightarrow X$ in \mathcal{K}

T-algebras

For a monad $T: \mathcal{C} \rightarrow \mathcal{C}$ a T-algebra is an object $X \in \mathcal{C}$ with a morphism $\nu: T(X) \rightarrow X$ in \mathcal{C} s.t.

Example: For a monad $T=A \otimes-: \mathcal{C} \rightarrow \mathcal{C}$ where A is an algebra and \mathcal{C} a monoidal cat., a T-algebra is precisely an A-module in \mathcal{C}.

- For a 2-monad $\left(\mathcal{A}, T: \mathcal{A} \rightarrow \mathcal{A}, \mu_{T}: T T \rightarrow T, \eta_{T}: \operatorname{ld}_{\mathcal{A}} \rightarrow T\right)$ in \mathcal{K} a T-algebra is a 1 -cell $X: \mathcal{A}^{\prime} \rightarrow \mathcal{A}$ with a 2 -cell $\nu: T X \Rightarrow X$ in \mathcal{K} s.t. the above diagrammatic identities hold, with the shift in dimension.

T-algebras vs. C-module categories

Exercise.

Let \mathcal{C} be a strict monoidal category

T-algebras vs. C-module categories

Exercise.

Let \mathcal{C} be a strict monoidal category
and $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1}$ a 2-monad in the 2-category Cat ${ }_{2}$.

T-algebras vs. C-module categories

Exercise.

Let \mathcal{C} be a strict monoidal category
and $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1}$ a 2-monad in the 2-category Cat ${ }_{2}$.

- A T-algebra is a 1 -cell $X: \mathcal{A}^{\prime} \rightarrow \mathcal{A}$ with a 2 -cell $\nu: T X \Rightarrow X$ in Cat $_{2}+$ 2 diagrams.

T-algebras vs. C-module categories

Exercise.

Let \mathcal{C} be a strict monoidal category
and $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1}$ a 2-monad in the 2-category Cat ${ }_{2}$.

- A T-algebra is a 1 -cell $X: \mathcal{A}^{\prime} \rightarrow \mathcal{A}$ with a 2 -cell $\nu: T X \Rightarrow X$ in Cat $_{2}+$ 2 diagrams. (Suppose $X=X(*) \times-$ with $\mathcal{A}=\mathcal{A}^{\prime}=$ Cat $_{1}$.)

T-algebras vs. C-module categories

Exercise.

Let \mathcal{C} be a strict monoidal category
and $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1}$ a 2-monad in the 2-category Cat ${ }_{2}$.

- A T-algebra is a 1 -cell $X: \mathcal{A}^{\prime} \rightarrow \mathcal{A}$ with a 2 -cell $\nu: T X \Rightarrow X$ in Cat $_{2}+$ 2 diagrams. (Suppose $X=X(*) \times-$ with $\mathcal{A}=\mathcal{A}^{\prime}=$ Cat $_{1}$.)

Set $X(*)=\mathcal{M}$.

T-algebras vs. C -module categories

Exercise.

Let \mathcal{C} be a strict monoidal category
and $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1}$ a 2-monad in the 2-category Cat ${ }_{2}$.

- A T-algebra is a 1 -cell $X: \mathcal{A}^{\prime} \rightarrow \mathcal{A}$ with a 2 -cell $\nu: T X \Rightarrow X$ in Cat $_{2}+$ 2 diagrams. (Suppose $X=X(*) \times-$ with $\mathcal{A}=\mathcal{A}^{\prime}=$ Cat $_{1}$.)
Set $X(*)=\mathcal{M}$. Then $X=\mathcal{M} \times-$ is a functor (1-cell in Cat ${ }_{2}$),

T-algebras vs. C-module categories

Exercise.

Let \mathcal{C} be a strict monoidal category and $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1}$ a 2-monad in the 2-category Cat ${ }_{2}$.

- A T-algebra is a 1 -cell $X: \mathcal{A}^{\prime} \rightarrow \mathcal{A}$ with a 2 -cell $\nu: T X \Rightarrow X$ in Cat $_{2}+$ 2 diagrams. (Suppose $X=X(*) \times-$ with $\mathcal{A}=\mathcal{A}^{\prime}=$ Cat $_{1}$.)

Set $X(*)=\mathcal{M}$. Then $X=\mathcal{M} \times-$ is a functor (1-cell in Cat ${ }_{2}$), and $\nu: \mathcal{C} \times(\mathcal{M} \times-) \Rightarrow \mathcal{M} \times-$ a natural transformation (2-cell in Cat 2).

T-algebras vs. C-module categories

Exercise.

Let \mathcal{C} be a strict monoidal category and $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1}$ a 2 -monad in the 2-category Cat ${ }_{2}$.

- A T-algebra is a 1 -cell $X: \mathcal{A}^{\prime} \rightarrow \mathcal{A}$ with a 2 -cell $\nu: T X \Rightarrow X$ in Cat $_{2}+$ 2 diagrams. (Suppose $X=X(*) \times-$ with $\mathcal{A}=\mathcal{A}^{\prime}=$ Cat $_{1}$.)

Set $X(*)=\mathcal{M}$. Then $X=\mathcal{M} \times-$ is a functor (1-cell in Cat ${ }_{2}$), and $\nu: \mathcal{C} \times(\mathcal{M} \times-) \Rightarrow \mathcal{M} \times-$ a natural transformation
(2-cell in Cat_{2}). The two diagrams evaluated at $*$ yield:

T-algebras vs. C-module categories

Exercise.

Let \mathcal{C} be a strict monoidal category and $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1}$ a 2 -monad in the 2-category Cat ${ }_{2}$.

- A T-algebra is a 1 -cell $X: \mathcal{A}^{\prime} \rightarrow \mathcal{A}$ with a 2 -cell $\nu: T X \Rightarrow X$ in Cat $_{2}+$ 2 diagrams. (Suppose $X=X(*) \times-$ with $\mathcal{A}=\mathcal{A}^{\prime}=$ Cat $_{1}$.)
Set $X(*)=\mathcal{M}$. Then $X=\mathcal{M} \times-$ is a functor (1-cell in Cat ${ }_{2}$), and $\nu: \mathcal{C} \times(\mathcal{M} \times-) \Rightarrow \mathcal{M} \times-$ a natural transformation
(2-cell in Cat_{2}). The two diagrams evaluated at $*$ yield:

$\Rightarrow X(*)=\mathcal{M}$ is a \mathcal{C}-module category.

T-algebras vs. C-module categories

Exercise.

Let \mathcal{C} be a strict monoidal category and $T=\mathcal{C} \times-:$ Cat $_{1} \rightarrow$ Cat $_{1}$ a 2 -monad in the 2-category Cat ${ }_{2}$.

- A T-algebra is a 1 -cell $X: \mathcal{A}^{\prime} \rightarrow \mathcal{A}$ with a 2 -cell $\nu: T X \Rightarrow X$ in Cat $_{2}+$ 2 diagrams. (Suppose $X=X(*) \times-$ with $\mathcal{A}=\mathcal{A}^{\prime}=$ Cat $_{1}$.)
Set $X(*)=\mathcal{M}$. Then $X=\mathcal{M} \times-$ is a functor (1-cell in Cat ${ }_{2}$), and $\nu: \mathcal{C} \times(\mathcal{M} \times-) \Rightarrow \mathcal{M} \times-$ a natural transformation
(2-cell in Cat_{2}). The two diagrams evaluated at $*$ yield:

$\Rightarrow X(*)=\mathcal{M}$ is a \mathcal{C}-module category.
Conversely: \mathcal{M} yields a T-algebra X with $T=\mathcal{C} \times-, X=\mathcal{M} \times-$.

2-Monads as lax functors

Lax functors

A lax functor $\mathcal{F}: \mathcal{B} \rightarrow \mathcal{B}^{\prime}$

Lax functors

A lax functor $\mathcal{F}: \mathcal{B} \rightarrow \mathcal{B}^{\prime} \quad$ consists of:

$$
\left(O b \mathcal{B} \ni \quad A \mapsto \mathcal{F}(A) \quad \in O b \mathcal{B}^{\prime}\right)
$$

Lax functors

A lax functor $\mathcal{F}: \mathcal{B} \rightarrow \mathcal{B}^{\prime} \quad$ consists of:

$$
\left(O b \mathcal{B} \ni \quad A \mapsto \mathcal{F}(A) \quad \in O b \mathcal{B}^{\prime}\right)
$$

- functors:

$$
\mathcal{F}_{A, B}: \mathcal{B}(A, B) \rightarrow \mathcal{B}^{\prime}(\mathcal{F}(A), \mathcal{F}(B))
$$

Lax functors

A lax functor $\mathcal{F}: \mathcal{B} \rightarrow \mathcal{B}^{\prime} \quad$ consists of:

$$
\left(O b \mathcal{B} \ni \quad A \mapsto \mathcal{F}(A) \quad \in O b \mathcal{B}^{\prime}\right)
$$

- functors:

$$
\mathcal{F}_{A, B}: \mathcal{B}(A, B) \rightarrow \mathcal{B}^{\prime}(\mathcal{F}(A), \mathcal{F}(B))
$$

$$
\text { objects (1-cells): } \quad f \mapsto \mathcal{F}(f)
$$

Lax functors

A lax functor $\mathcal{F}: \mathcal{B} \rightarrow \mathcal{B}^{\prime} \quad$ consists of:

$$
\left(O b \mathcal{B} \ni \quad A \mapsto \mathcal{F}(A) \quad \in O b \mathcal{B}^{\prime}\right)
$$

- functors:

$$
\mathcal{F}_{A, B}: \mathcal{B}(A, B) \rightarrow \mathcal{B}^{\prime}(\mathcal{F}(A), \mathcal{F}(B))
$$

objects (1-cells):

$$
f \mapsto \mathcal{F}(f)
$$

morphisms (2-cells):

$$
\mathcal{F}\left(\frac{\alpha}{\beta}\right)=\frac{\mathcal{F}(\alpha)}{\mathcal{F}(\beta)}
$$

Lax functors

A lax functor $\mathcal{F}: \mathcal{B} \rightarrow \mathcal{B}^{\prime} \quad$ consists of:

$$
\left(O b \mathcal{B} \ni \quad A \mapsto \mathcal{F}(A) \quad \in O b \mathcal{B}^{\prime}\right)
$$

- functors:

$$
\mathcal{F}_{A, B}: \mathcal{B}(A, B) \rightarrow \mathcal{B}^{\prime}(\mathcal{F}(A), \mathcal{F}(B))
$$

objects (1-cells):

$$
f \mapsto \mathcal{F}(f)
$$

morphisms (2-cells):

$$
\mathcal{F}\left(\frac{\alpha}{\beta}\right)=\frac{\mathcal{F}(\alpha)}{\mathcal{F}(\beta)}
$$

- 2-cells natural in g, f :
$\Rightarrow \mathcal{F}(g) \circ \mathcal{F}(f) \xrightarrow{\xi} \mathcal{F}(g \circ f)$
+ hexagon;
$-i d_{\mathcal{F}(*)} \xrightarrow{\zeta} \mathcal{F}(i d)$
+2 squares.

Lax functors $* \rightarrow \mathcal{K}$

A lax functor $\mathcal{F}: * \mathcal{K}$

Lax functors $* \rightarrow \mathcal{K}$

A lax functor $\mathcal{F}: * \rightarrow \mathcal{K} \quad$ consists of:
$(O b * \ni \quad * \mapsto \mathcal{F}(*):=\mathcal{A} \quad \in O b \mathcal{K})$

Lax functors $* \rightarrow \mathcal{K}$

A lax functor $\mathcal{F}: * \rightarrow \mathcal{K} \quad$ consists of:

$$
(O b * \ni \quad * \mapsto \mathcal{F}(*):=\mathcal{A} \quad \in O b \mathcal{K})
$$

- functor:

$$
\mathcal{F}_{*, *}: \mathcal{K}(*, *) \rightarrow \mathcal{K}(\mathcal{F}(*), \mathcal{F}(*))
$$

Lax functors $* \rightarrow \mathcal{K}$

A lax functor $\mathcal{F}: * \rightarrow \mathcal{K} \quad$ consists of:

$$
(O b * \ni \quad * \mapsto \mathcal{F}(*):=\mathcal{A} \quad \in O b \mathcal{K})
$$

- functor:

$$
\mathcal{F}_{*, *}: \mathcal{K}(*, *) \rightarrow \mathcal{K}(\mathcal{F}(*), \mathcal{F}(*))
$$

objects (1-cells):

$$
i d \mapsto \mathcal{F}(i d):=T
$$

Lax functors $* \rightarrow \mathcal{K}$

A lax functor $\mathcal{F}: * \rightarrow \mathcal{K} \quad$ consists of:

$$
(O b * \ni \quad * \mapsto \mathcal{F}(*):=\mathcal{A} \quad \in O b \mathcal{K})
$$

- functor:

$$
\mathcal{F}_{*, *}: \mathcal{K}(*, *) \rightarrow \mathcal{K}(\mathcal{F}(*), \mathcal{F}(*))
$$

objects (1-cells):
id $\mapsto \mathcal{F}(i d):=T$
morphisms (2-cells):

$$
\mathrm{Id}_{i d} \mapsto \mathcal{F}\left(\mathrm{Id}_{i d}\right):=\mathrm{Id}_{T}
$$

Lax functors $* \rightarrow \mathcal{K}$

A lax functor $\mathcal{F}: * \rightarrow \mathcal{K} \quad$ consists of:

$$
(O b * \ni \quad * \mapsto \mathcal{F}(*):=\mathcal{A} \quad \in O b \mathcal{K})
$$

- functor:

$$
\mathcal{F}_{*, *}: \mathcal{K}(*, *) \rightarrow \mathcal{K}(\mathcal{F}(*), \mathcal{F}(*))
$$

$$
\text { objects (1-cells): } \quad \text { id } \mapsto \mathcal{F}(i d):=T
$$

morphisms (2-cells): $\quad \quad \operatorname{Id}_{i d} \mapsto \mathcal{F}\left(\mathrm{Id}_{i d}\right):=\mathrm{Id}_{T}$

- 2-cells (natural in) id:
$\triangleright \mathcal{F}(i d) \circ \mathcal{F}(i d) \xrightarrow{\xi} \mathcal{F}(i d \circ i d) \quad:=\mu_{T} \quad+$ hexagon;
$\triangleright i d_{\mathcal{F}(*)} \xrightarrow{\zeta} \mathcal{F}\left(i d_{*}\right) \quad:=\eta_{T}$
+2 squares.

Diagrams for pseudofunctors

$$
\begin{aligned}
& \mathcal{F}(h) \circ(\mathcal{F}(g) \circ \mathcal{F}(f)) \xrightarrow{1 \circ \xi} \mathcal{F}(h) \circ \mathcal{F}(g \circ f) \xrightarrow{\mathcal{F}}(h \circ(g \circ f))
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\rho}{\left.\mathcal{F}(f) \circ \mathrm{Id}_{A} \xrightarrow{1 \circ \zeta} \mathcal{F}(f) \circ \mathcal{F}\left(\mathrm{Id}_{A}\right) \xrightarrow[\mathcal{F}(\rho)]{\underset{\mathcal{F}}{\boldsymbol{G}} \mathcal{F}}\left(f \circ \mathrm{Id}_{A}\right)\right)}
\end{aligned}
$$

Diagrams for pseudofunctors

$$
\begin{aligned}
& \mathcal{F}(h) \circ(\mathcal{F}(g) \circ \mathcal{F}(f)) \xrightarrow{1 \circ \xi} \mathcal{F}(h) \circ \mathcal{F}(g \circ f) \xrightarrow{\mathcal{F}}(h \circ(g \circ f))
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Id}_{B} \circ \mathcal{F}(f) \underset{\mathcal{F}(f)}{\zeta \circ 1} \mathcal{F}\left(\mathrm{Id}_{B}\right) \circ \mathcal{F}(f) \xrightarrow{\underline{\mathcal{F}}(\lambda)} \mathcal{F}\left(\mathrm{Id}_{B} \circ f\right) \\
& \underset{\rho}{\mathcal{F}(f) \circ \mathrm{Id}_{A} \xrightarrow{1 \circ \zeta} \mathcal{F}(f) \circ \mathcal{F}\left(\mathrm{Id}_{A}\right) \xrightarrow{\boldsymbol{F}(f)} \underset{\mathcal{F}(\rho)}{\mathcal{F}}\left(f \circ \mathrm{Id}_{A}\right)}
\end{aligned}
$$

\Rightarrow A lax functor $\mathcal{F}: * \rightarrow \mathcal{K}$ is a 2 -monad in \mathcal{K}.

